УЗО: принцип работы, назначение, технические характеристики, варианты подключения УЗО. Что такое узо в электрике, принцип его работы, параметры, производители Электронное защитное устройство

Можно услышать мнение, в котором оспаривается необходимость установки устройств защитного отключения (далее УЗО). Чтобы опровергнуть или подтвердить его необходимо понимать функциональное назначение этих устройств, их принцип работы, конструктивные особенности и схему подключения. Также немаловажным фактором является правильное подключение, в зависимости от определенной задачи. Мы постараемся максимально широко ответить на все вопросы касательно данной темы.

Функциональное назначение

Согласно официальному определению данный тип устройств играет роль быстродействующего защитного выключателя, реагирующего на утечку тока. То есть он срабатывает в том случае, когда образуется цепь между фазой и «землей» (проводником РЕ).

Приведем классический пример, в ванной установлен электрический водонагреватель. Он работает беспроблемно гарантийный срок и даже более, потом наступает момент, когда корпус одного из нагревающих элементов дает трещину и происходит пробой фазы на воду.

Если в данном случае образуется цепь: фаза – человек – земля, тока нагрузки будет недостаточно для срабатывания электромагнитной защиты, она рассчитана на КЗ. Что касается тепловой защиты, то время ее срабатывания значительно дольше сопротивляемости человеческого организма деструктивному воздействию электротока. Результат можно не описывать, самое страшное то, что в многоквартирном доме такой бойлер может нести угрозу соседям.

В таких случаях представленный аппарат – единственно действенный способ обеспечить надежную защиту. Самое время рассмотреть его принципиальную схему, конструкцию и принцип действия.

Схема устройства

В первую очередь, представим принципиальную схему устройства, с указанием его основных элементов.


Обозначение:

  • А – Реле, управляющее контактной группой.
  • В – Дифференциальный ТТ (трансформатор тока).
  • С – Обмотка фазы на ДТТ.
  • D – Обмотка нуля на ДТТ.
  • Е – Контактная группа.
  • F – Нагрузочное сопротивление.
  • G – Кнопка, запускающая тестирование устройства.
  • 1 – Вход фазы.
  • 2 – Выход фазы.
  • N – Контакты нулевого провода.

Теперь объясним, как это работает.

Принцип работы

Допустим, от нашего защитного устройства запитан некий прибор с внутренним сопротивлением R n , при этом корпус подключенного устройства заземлен. В данном случае при штатном режиме работы, через обмотки I и II ДТТ будут протекать равные по значению, но разные по направлению токи.


Таким образом, суммарная величина i 0 и i 1 будет нулевой. Соответственно, вызываемые токами магнитные потоки в ДТТ, также будут встречными, поэтому их суммарная величина, также будет нулевой. С учетом перечисленных условий, во вторичной обмотке ДДТ ток образовываться не будет, поэтому реле, управляющее контактной группой, не инициируется. То есть, защитное устройство будет оставаться во включенном состоянии.

Теперь рассмотрим ситуацию, в которой произошел пробой на корпус подключенного оборудования.


В результате появления тока утечки (i у) на «землю» будет нарушен баланс токов, протекающих по первичным обмоткам I и II. Это приведет к тому, что величина магнитного потока также станет отличной от нуля, что вызовет образования тока (i 2) на вторичной обмотке ДТТ (III), к которой подключено реле, управляющее контактной группой. Оно сработает, и подключенное оборудование будет обесточено.

Кнопка тестирования на приборе имитирует утечку тока через резистор R t , что дает возможность убедиться в работоспособности прибора. Такую проверку необходимо проводить не реже одного раза в месяц.

Конструктивное исполнение

Ниже на рисунке представлено типовое защитное устройство со снятой верхней крышкой, что позволяет рассмотреть основные узлы конструкции.


Обозначения:

  • А – Механизм кнопки, запускающей тестирование устройства.
  • В – Контактные площадки для подключения входа фазы и нулевого провода.
  • С – Дифференциальный ТТ.
  • D – Электронная плата усилителя тока, поступающего со вторичной обмотки, до уровня, необходимого для срабатывания реле.
  • Е – Нижняя часть пластикового корпуса со стандартным креплением под DIN-рейку.
  • F – Дугогасительнаые камеры на размыкающейся группе контактов.
  • G – Контактные площадки для подключения выхода фазы и нулевого провода.
  • H – Механизм расцепителя (приводится в действие реле или вручную).

Перечень основных характеристик

Разобравшись с конструкцией приборов и их принципом работы, перейдем к основным параметрам. К числу таковых относятся:

  • Тип защищаемой электропроводки, она может быть однофазной или трехфазной. Данный параметр влияет на количество полюсов (2 или 4).
  • Величина номинального напряжения, для двухполюсных аппаратов это 220-240 Вольт, четырехполюсных – 380-400 Вольт.
  • Величина номинальной токовой нагрузки, этот параметр соответствует аналогичному у автоматических выключателей (далее АВ), но имеет несколько другое назначение (подробно будет рассказано ниже), измеряется в Амперах.
  • Номинальная величина дифференциального (отключающего) тока, типовые значения: 10, 30, 100 и 300 мА.
  • Вид отключающего тока, принятые обозначения:
  1. AC – Соответствует переменному току синусоидальной формы. Допускается как его медленное нарастание, так и внезапное проявление.
  2. А – К предыдущим характеристикам (AC) добавляется возможность отслеживать утечку выпрямленного пульсирующего тока.
  3. S – Обозначение селективных устройств, они отличаются относительно высокой задержкой срабатывания.
  4. G – Соответствует предыдущему типу (S), но с меньшей задержкой.

Теперь необходимо объяснить значение параметра номинального тока, поскольку с ним возникают некоторые вопросы. Это значение указывает на максимально допустимый ток для данного защитного электромеханического аппарата.

Подбирая этот параметр необходимо учесть, что он должен быть на одну ступень выше, чем у АВ на данной линии. Например, если АВ рассчитан на 25 А, то необходимо устанавливать защитные устройства с номинальным током – 32 А.

Обратим, внимание, на то, что данный тип устройств не предназначен для срабатывания от КЗ и перегрузки. Если произойдет подобная авария, то выгорит вся проводка и возникнет пожар, но аппарат так и останется включенным. Именно поэтому такие защитные устройства необходимо использовать совместно с АВ. Как вариант, можно устанавливать диффавтомат, по сути это тоже устройство защитного отключения, но снабженное механизмом защиты от КЗ и перегрузки.

Маркировка

Маркировка наносится на лицевую панель прибора, расскажем, что она обозначает на примере двухполюсного устройства.


Обозначения:

  • А – Аббревиатура или логотип производителя.
  • В – обозначение серии.
  • С – Величина номинального напряжения.
  • D – Параметр номинального тока.
  • Е – Значение отключающего тока.
  • F – Графическое обозначение типа отключающего тока, может быть продублировано литерами (в нашем случае изображена синусоида, что указывает на тип АС).
  • G – Графическое обозначение устройства на принципиальных схемах.
  • Н – Значение условного тока КЗ.
  • I – Схема устройства.
  • J – Минимальное значение рабочей температуры (в нашем случае: – 25°С).

Мы привели типовую маркировку, которая применяется в большинстве устройств данного класса.

Варианты подключения

Прежде, чем перейти к типовым схемам подключения, необходимо рассказать о нескольких общих правилах:

  1. Устройства данного типа должны быть в паре с АВ, как мы уже упоминали выше, это связано с тем, что защитных устройств не оборудовано защитой от КЗ.
  2. Величина номинального тока защитного устройства, она должна быть на ступень выше, чем у стоящего с ним в паре АВ.
  3. Нельзя путать входные и выходные контакты. То есть, на вход, помеченный, как правило, «1» должна подаваться фаза, на «N» – ноль. Соответственно, «2» – это выход фазы, а «N» – нуля.
  4. Ноль после аппарат не должен соединяться с нулем до него.

Теперь рассмотрим самую простую схему, в которой на каждую линию установлена защита от КЗ и тока утечки.


В данном случае все просто, на вход устанавливается АВ (А на рис. 7) с номинальным током 40 А. После него стоит общее устройство (В), его еще называют противопожарным. У данного устройства ток утечки должен быть не менее 100 мА, номинальный ток, как минимум – 50 А (см. пункт 2 общих правил, указанных выше). Далее идут две связки УЗО-АВ (С-Е и D-F). Параметр номинального тока у «С» и «D» – 16 A. Для «E» и «F» это параметр должен быть на ступень выше, в нашем случае – это 20 А. Что касается величины отключающего тока, то для влажных помещений этот показатель должен быть 10 мА, для остальных групп потребителей – 30 мА.

Такой вариант подключения самый простой и надежны, но при этом и более затратный. Для двух внутренних линий его еще можно использовать, но когда их число от 4-х и больше имеет смысл ставить одно устройство защиты на группу АВ. Пример такой схемы приведен нижне.


Как видите в данной схеме у нас установлено одно общее (противопожарное) защитное устройство и четыре групповых на освещение, кухню, розетки и ванную комнату. Такой вариант подключения позволяет существенно сократить затраты, по сравнению со схемой, где на каждую линию подключается связка УЗО-АВ. Помимо этого обеспечивается необходимый уровень защиты.

В заключение несколько слов о необходимости защитного заземления. Для нормального функционирования УЗО оно необходимо. В интернете можно найти схему включения без PE (собственно она ничем не отличается от обычной), но следует заметить, что сработка будет только в том случае, когда произойдет контакт с батарей, трубами холодной или горячей воды и т.д.

Вступление

Для защиты людей и животных разработаны специальные электротехнические устройства. Называются они устройство защитного отключения, сокращенно УЗО. УЗО защищает от поражения электрическим током, при касании оборудования оказавшегося под напряжением. Защита происходит как при прямом, так и при косвенном касании оборудования, находящегося под напряжением. Кроме этой задачи УЗО используется для контролирования состояния изоляции электропроводки. Это обеспечивает дополнительную защиту помещения от пажара. Разберем функции устройства защитного отключения (УЗО) подробнее.

Функции УЗО

УЗО защищает человека и животных от поражения током при прикосновении к корпусам электроприборов, оказавшихся под напряжением.

Токопроводящие корпуса и отдельные элементы оборудования и приборов могут оказаться под напряжением. Это безусловно аварийная ситуация и возникнуть она может в двух случаях.

  1. Если на корпус прибора замкнулся фазный провод электропроводки, то при условии заземления корпуса, происходит так называемое короткое замыкание. Для отключения сети, при коротком замыкании, предназначены автоматы защиты. Но корпус может быть не заземлен или сопротивление цепи замыкания очень велико и автоматы защиты не сработают. Решит задачу защиты, в этом случае, установка УЗО в электроцепь.
  2. Или касание фазного провода корпуса оборудования не полное. Тоесть изоляция на токоведущих проводах может лишь повредится, и тогда появятся, так называемые токи утечки. Ток утечки может не только неприятно «кусаться», но быть смертельно опасным, особенно во влажных помещениях. Защитит от токов утечки правильно подобранное и установленное УЗО.

Выводы

Основные функции УЗО две:

  • Обнаруживать ток утечки и автоматически отключать электрическую цепь. Время отключения цепи УЗО 200 миллисекунд (1 миллисекунда =0,001 секунды).
  • Защищать не только от косвенного, но и от прямого прикосновения. Прямое прикосновение это касание человеком или зверем к токоведущим частям приборов находящихся под напряжением.

Дополнительная функция УЗО

УЗО установленное на входе электропитания в дом, обеспечивает дополнительную пожаробезопасность помещения. В некоторых странах установка УЗО с чувствительностью в 500 mAобязательно. У нас (в РФ) установка УЗО на 300 mAна вводе в дом, для защиты от пожара носит рекомендательный характер.

Разберем, как УЗО контролирует токи утечки и как вообще оно срабатывает.

Принцип действия устройства защитного отключения (УЗО)

Рассмотрим принцип действия УЗО, на объяснении принципа действия реле тока повреждения (Схема 1,Схема 2)

В корпусе УЗО есть магнитная цепь, выполненная из кругового сердечника. Вокруг сердечника протекают ток ВХОДА потребителя (I1) и ток ВЫХОДА потребителя(I2).В нормальном режиме работы эти токи равны и система находится в равновесии.

Схема 1.

class="eliadunit">

При возникновении тока утечки со стороны потребителя(Id),равновесие токов нарушается и по измерительной обмотке сердечника УЗО начинает течь ток пропорциональный току утечки. Реле в УЗО срабатывает, потому что реле запитано от этой измерительной обмотки. «Реле срабатывает» это значит, что цепь размыкается, и ток на поврежденный потребитель не поступает и как следствие УЗО защищает человека от тока утечки.

Разность токов называется дифференциальным током, поэтому говорят, что УЗО реагирует на дифференциальные токи в цепи.

А автомат защиты, совмещенный с УЗО, называют дифференциальный автомат защиты. Тоесть он срабатывает и на ток короткого замыкания и на дифференциальный ток, возникающий при утечки тока.

Схема 2:Принцип работы устройства защитного отключения (УЗО) на схеме с системой питания TN-S.

Схема 2.

Условные обозначения:

  • I 1 - ток на ВХОДЕ потребителя
  • I2 - ток на ВЫХОДЕ потребителя
  • Id - ток утечки
  • Ic - ток через тело при касании корпуса находящегося под напряжением
  • RA - сопротивление заземления

Читайте и смотрите наглядную схему работы УЗО в ситеме TN-S . Формат схемы 750×1120 точек.Статья с формулами и таблицами.

С самых ранних лет детей предостерегают по поводу опасного воздействия электричества. Позже, на уроках физики они узнают, что смертельно опасной является сила тока больше 0,1А или 100мА. Но многие люди путают это понятие и напряжение.

Прежде, чем знакомиться с устройством прибора, способного защитить от губительного действия электричества, нужно освежить в памяти его основные концепции. Поток электрических зарядов, благодаря способности создавать тепловые, электромагнитные, электрохимические взаимодействия является энергоносителем, в корне определившим развитие человечества.

Но, при прохождении сквозь человеческое тело, эти взаимодействия пагубно влияют на строение клеток на молекулярном уровне, вызывая их гибель. Также парализованной становится нервная система, работающая по принципу обмена электрическими зарядами. Чем больше электронов проходит через проводник, тем большей является сила тока, тем больше его поражающее действие.

Визуализация электричества

Наглядно эту силу можно сравнить с объёмом двигающейся воды, тогда как напряжение с разницей уровней. Падающая с большого вертикального расстояния тонкая струя не окажет ощутимого воздействия на человеческое тело, в сравнении с метровой высоты потоком, сбивающим с ног.

Напряжение U создаёт электрический ток, прямо пропорциональный U, а его сила I, согласно закону Ома, обратно пропорциональна сопротивлению R источника питания, питающих проводов и самого проводника, которым является человеческое тело в момент поражения, I=U/R. Поскольку напряжение сети стандартно, её сопротивление очень мало, степень поражающего влияния электричества зависит от сопротивления организма, сухости кожи, наличия обуви.

Измерение утечки вызывающей поражение.
В идеальной двухпроводной системе токи в фазном и нулевом проводе равны: IL= IN. Если где-нибудь в цепи произойдёт контакт провода с землёй через плохую изоляцию, или человеческое тело, то IL= IN+IΔn, где IΔn — ток утечки, вызывающий поражение, или воспламенение кабеля. Соответственно IΔnравен разнице входного и выходного токов: IΔn= IL-IN.

Измерение данной разницы (англ. different) с помощью дифференциального трансформатора дало возможность создать устройство защитного отключения (сокращённо УЗО), которое размыкает цепь, отключая напряжение, если IΔn превышает опасное для здоровья значение, или пожароопасный ток больше 100мА.

Дифференциальный трансформатор тока имеет две первичные обмотки (катушки), включённые разнонаправлено, и вторичную обмотку, которая имеет подключение к исполнительному устройству отключающего механизма. Если в первичных катушках IL= IN, то магнитный поток в тороидальном сердечнике будет взаимно скомпенсированным ФL = ФN, соответственно на вторичной обмотке не будет наводится электродвижущая сила, не будет тока и его воздействия на электромагнитное реле выключателя.

Момент срабатывания устройства

В случае появления утечки IL> IN , что приводит к дисбалансу магнитных потоков, ФL > ФN, а их разница, благодаря электромагнитной индукции, будет воздействовать на вторичную катушку, в ней возникнет ток IΔ>0, отключающий защитный выключатель.

Таким образом, принцип работы УЗО состоит в срабатывания размыкающего механизма (расщепителя) при сопоставлении входных и выходных токов, если превышение их разницы выше установленного значения, которое называют уставкой. В виду того, что существуют потери тока, вызванные электромагнитным излучением, конденсаторным эффектом, статичным разрядом, а также, потому что изоляция не идеальна, уставка принимается выше нулевого значения и зависит от сферы применения устройств защиты.

Данный принцип измерения дифференциального тока справедлив и для трёхфазного напряжения. В данном случае применяются четверо первичных обмоток: три фазные и одна нулевая, и в идеальной системе сумма всех токов равна нулю. При утечке на одном из фазных проводов равновесие нарушается и возникает IΔ, вызывающий срабатывание защиты.

Номинальный отключающий ток (уставка)

Для кабелей электрических линий, согласно ПУЭ, принимается значение потерь 0,01мА на каждый метр провода, и для электроприборов применяется коэффициент 0,4 мА потерь на каждый Ампер нагрузки.

Поэтому для подключения с помощью коротких проводов сравнительно небольшой нагрузки применяют как можно меньшую уставку из ряда унифицированных значений отключающего номинального дифференциального тока IΔn, который указывают на корпусе УЗО: 10; 30; 100; 300;500 мА.

Например, для подключения бойлера, розеток, освещения в ванной, где вероятность поражения велика в виду высокой влажности воздуха и мокрых поверхностей, применяется IΔn=10мА. Также данная уставка подходит для кухни или электрификации подвала, гаража. Для всего дома нужно выбрать устройство защитного отключения с IΔn=30мА, во избежание ложных срабатываний из-за большого количества потребителей при значительной протяжённости сети.

Для обеспечения пожарной безопасности энергосетей большой протяжённости применяют значения уставки выше 100мА. Для разных групп потребителей возможно параллельное подключение нескольких УЗО с разным дифференциальным током отключения. Также распространена схема последовательного включения УЗО с различной уставкой для обеспечения селективной защиты.

Практическое использование

Чтобы принцип работы УЗО был более понятен, нужно рассмотреть варианты его практического использования. В случае, если используется двухпроводная система питания, если внутренняя схема электроприбора дала сбой и появилось опасное напряжение на его корпусе, при прикосновении к нему или оголённому проводу под напряжением, ток пойдёт через человеческое тело в землю, тем самым нарушая баланс токов в дифференциальном трансформаторе, из за чего возникший IΔ отключит питание.

Пострадавший при этом получит шок из-за краткосрочного действия тока, превышающего уставку, значение которого будет зависеть от суммы сопротивлений кожи, тканей организма, обуви, пола.

Влажность и площадь контакта тоже имеют существенное значение, поэтому травматизм и глубина шока зависят от условий в каждом конкретном случае, но степень поражения не является фатальной ввиду краткосрочности воздействия поражающего фактора, из-за высокого быстродействия УЗО.

При условии использования дополнительного третьего заземляющего проводника РЕ, при пробое изоляции внутри электроприбора, поражения вообще не случится, так как в этот момент при появлении тока утечки тут же сработает УЗО. Без его использования, поражения хоть и не произойдёт ввиду заземления корпуса, но токи утечки опасны своим тепловыделением, которое может привести к дальнейшему разрушению электроприбора и даже спровоцировать его возгорание, приводящее к пожару.

Считается, что при токе большем 100мА в точке пробоя изоляции выделяется достаточно тепла, чтобы нагреть контактирующие материалы до температуры их плавления и возгорания.

Поэтому УЗО, помимо защиты от смертельного электрического шока также с успехом применяется для обеспечения пожарной безопасности сети. Очевидно, что данную функцию выполняют УЗО с любой уставкой, но нужно помнить, что устройства защиты с IΔn>100мА применяются только для предотвращения пожаров при токах утечки в пробоях изоляции.

Важно

При контакте выходного нулевого провода УЗО с землёй, заземлением или входным нулём, будет ложное срабатывание защиты.
Поскольку УЗО не защищает от короткого замыкания и перегрузок по току, его надо устанавливать вместе с защитным автоматом.
Работоспособность УЗО следует периодически проверять с помощью кнопки «Тест».

Устройство защитного отключения далее УЗО, предназначено для защиты человека от поражения электрическим током, а также от возникновения пожара, который может возникнуть при утечки электрического тока, вследствие плохой изоляции или плохого соединения электроустановок (ЭУ).

УЗО должно сработать, то есть, разомкнуть контакты, тем самым полностью прекратить подачу напряжения на защищаемую линию, при условии:

1 Прикосновения человека к нетоковедущим частям ЭУ оказавшимся под напряжение вследствие пробоя изоляции.
2 Прикосновении человека к токоведущим частям ЭУ, находящимся под напряжением.
3 Возникновения (дифференциального) тока утечки на корпус ЭУ или землю для предотвращения пожара.

Принцип действия УЗО. Схема

Рис. 1

1 Дифференциальный трансформатор тока
2 Пусковой элемент
3 Исполнительный механизм
4 Кнопка «Тест» для контроля исправности УЗО
I 1 – I 2 направлениетока относительно нагрузки
I D – ток утечки
Ф 1 – Ф 2 магнитные потоки

Назначение блоков.
1 Дифференциальный трансформатор тока (используется в большинстве УЗО) измеряет баланс токов между входящими в него проводниками.
2 Пусковой элемент (состоит, как правило, из электромагнитных реле) служит для управления (воздействия) исполнительным механизмом.
3 Исполнительный механизм предназначен для аварийного отключения эелетроцепи, контролируемой УЗО.
4 Кнопка «Тест» для контроля исправности УЗО путем создания имитации тока утечки.

Принцип работы устройство защитного отключения (УЗО)

Принципиальная электрическая схема

Рис. 2

1, 2 Первичные обмотки
3 Вторичная обмотка

При исправности контролируемой линии, нет заданного тока утечки, и трансформатор находится в состоянии покоя (равновесия), потому что токи в встречно включенных первичных обмотках трансформатора равны. Из-за того, что равные магнитные потоки идущие навстречу друг другу взаимовычитаются (тоесть равны нулю), то во вторичной катушке не возникает электромагнитное поле, а значит нет напряжения и не возникает ЭДС способное воздействовать на реле, на основе которого собран пусковой механизм (рис.1 ).

А как только происходит утечка на защищаемой (контролируемой) линии равная значению срабатывания УЗО (как правило, от 10 до 30 mA), то нарушатся равенство в первичных обмотках трансформатора. Вследствие этого возникает электромагнитное поле в первичных и вторичных катушках, которое образует связь по напряжению. Тоесть, во вторичной обмотке возникает напряжение срабатывания реле (рис. 2 ), из которого состоит пусковой элемент (рис. 1) воздействие, которого на исполнительный механизм (рис. 1) и отключает контактную группу, обесточивая, таким образом, защищаемую линию.

Внимание!

Следует помнить, что УЗО требует ежемесячной проверки, которая осуществляется нажатием кнопки «Тест». При этом происходит замыкание электроцепи, эмитирующей искусственную утечку тока и срабатывание устройства защитного отключения. Отсутствие срабатывания укажет на полную неисправность устройства.

По современным требованиям все электроустановки должны иметь или . При этом возникшая заданная утечка автоматически отключит защиту.

Пример этого видно на схеме рис. 3


Рис. 3

Если представить дифзащиту в виде простого механического устройства как весы (рис. 4 ) с порогом срабатывания до 10 mA. То сразу становится понятно, что при достижении значения 10 mA на одной из чаши весов, они выйдут из равновесия при этом разомкнутся контакты и контролируемая (защищаемая) линия обесточится. Причем заметим, что центром равновесия весов служит именно или , поэтому именно их и надо использовать, чтобы человек сам не являлся этим центром.

Внимание!

Также нужно понимать, что УЗО является дополнительной мерой безопасности, которое реагирует только на дифференциальный ток (ток утечки) и не реагирует на короткие замыкания и перегрузку линии. Поэтому, как правило, УЗО устанавливается вместе с автоматическими выключателями, которые реагируют на КЗ (короткое замыкание) и перегрузку линии по напряжению, на которую они рассчитаны.

Наглядная электрическая схема подключения УЗО

Рис. 5

УЗО. Видео пояснение

Выбор электромеханического УЗО

Желаю удачного монтажа и помните о электробезопасности .

ВЫКЛЮЧАТЕЛИ ДИФФЕРЕНЦИАЛЬНЫЕ типа ВД1-63 (УЗО). Руководство по эксплуатации

Паспорт

3421-033-18461115-2007 РЭ, ПС

1 Назначение и область применения

1.1 Выключатели автоматичес­кие, управляемые дифференциаль­ным током, без встроенной защиты от сверхтоков, функционально не зависящие от напряжения сети бы­тового и аналогичного применения типа ВД1 -63 (УЗО) торговой марки IEK® (далее - ВД) предназначены для эксплуатации в однофазных или трехфазных электрических сетях переменного тока напряжением до 400 В частотой 50 Гц

и по своим характеристикам соответствуют ГОСТ Р 51326.1 и техническим условиям ТУ 3421 -033-18461115-2002.

1.2 ВД выполняют функцию обнаружения дифференциального тока, сравнения его со значением дифференциального тока срабаты­вания и отключения защищаемой цепи в случае, когда дифференци­альный ток превосходит это значе­ние. ВД обеспечивают:

— защиту людей от поражения электрическим током при косвенном контакте с доступными проводящими частями электроустановок при по­вреждении изоляции (ВД с номиналь­ным отключающим дифференциаль­ным током 10; 30 и 100 мА);

— защиту от пожаров, возника­ющих вследствие возгорания изо­ляции токоведущих частей электро­приборов от дифференциального (остаточного) тока на землю или вследствие длительного проте­кания тока повреждения в случае несрабатывания устройств защиты от сверхтоков (ВД с номинальным отключающим дифференциальным током I D n = 300 мА);

— ВД, имеющие номинальный отключающий дифференциальный ток не более 30 мА, могут использо­ваться как средства дополнитель­ной защиты в случае выхода из строя устройств, предназначен­ных для защиты от поражения электрическим током.

1.3 Основная область использо­вания ВД - учетно - распределительные щиты жилых и общественных Зданий, устройства временного электроснабжения строительных площадок, садовые дома, гаражи, объекты розничной торговли.

2 Основные характеристики

2.1 Основные характеристики ВД приведены в таблице 1.

Таблица 1

Наименование характеристики Значение
Число полюсов 2 4
Номинальное рабочее напряжение переменного тока Ue, В 230 230, 400
Номинальная частота сети, Гц 50
Диапазон напряжений работоспособности устройства эксплуатационного контроля, В от 115 до 265 от 200 до 460
Номинальный ток In, А 16, 25, 32, 40, 50, 63, 80, 100
Номинальный отключающий дифференциальный ток I D n , мА 10, 30, 100, 300
Номинальный неотключающий дифференциальный ток I D n o , мА 0,5 I D n
Номинальная наибольшая включающая и отключающая способность Inm, А 1000
Номинальная наибольшая дифференциальная включающая и отключающая способность I D m , А 1000
Номинальный условный ток короткого замыкания не менее, А 3000
Номинальный условный дифференциальный ток короткого замыкания I nc , не менее, А 3000
Характеристика функционирования при наличии дифференциального тока с составляющей постоянного тока, тип АС
Электрическая износостойкость, циклов включения-отключения (В-О), не менее 4000
Механическая износостойкость циклов В-0, не менее 10 000
Максимальное сечение провода, присоединяемого к силовым зажимам, мм 2 50
Наличие драгоценных металлов, серебро, г 0,25 (на один контакт)
Климатическое исполнение и категория размещения по ГОСТ 15150 УХЛ14
Степень защиты по ГОСТ 14254 IP20
Срок службы, не менее, лет 15

2.2 Значения максимального времени отключения ВД при наличии дифференциального тока приведены в таблице 2.

Таблица 2

Внимание! ВД не имеет встроен­ной защиты от сверхтоков, поэтому последовательно с ним необходимо включать автоматический выключа­тель аналогичного или меньшего номинала с типом защитных характеристик от сверхтоков В и С.

2.3 Габаритные и установочные размеры приведены на рисунке 1.

2.4 Схемы электрические принципиальные ВД приведены на рисунках 2 и 3.

2.5 Применение ВД в квартирных и этажных щитах в электроустановках с системами заземления TN-S, TN-C-S, TN-C регламентируется в ГОСТ Р 51628.

3 Комплектность

В комплект поставки входят:

  • ВД - 1 шт.;
  • упаковочная коробка - 1 шт.;
  • руководство по эксплуатации и паспорт - 1 экз.

4 Монтаж и эксплуатация

4.1 Монтаж, подключение и пуск в эксплуатацию ВД должны осуществляться только квалифици­рованным электротехническим персоналом.

4.2 ВД устанавливают на мон­тажной рейке шириной 35 мм (DIN- рейке) в электрощитах со степенью защиты по ГОСТ 14254 не ниже IP30.

4.3 После монтажа и проверки его правильности подают напряже­ние электрической сети на электро­установку и включают ВД перево­дом рукоятки управления в положе­ние «I» - «ВКЛ», нажимают кнопку

«ТЕСТ». Немедленное срабатыва­ние ВД (отключение защищаемой устройством цепи) означает, что ВД исправно.

4.4 Если после включения ВД сразу или через некоторое время происходит его отключение, не­обходимо определить вид неис­правности в электроустановке в следующем порядке:

а) взвести ВД рукояткой управ­ления. Если ВД взводится,

то это означает, что в электроуста­новке имела место утечка тока на землю, вызванная нестабильным или кратковременным нарушением изоляции. Проверить работоспо­собность ВД нажатием кнопки «ТЕСТ»;

б) если ВД не взводится,

то это означает, что в электроуста­новке имеет место дефект изоляции какого-либо электроприемника, электропроводки, монтажных проводников электрощита или ВД неисправно.

В этом случае необходимо произвести следующие действия:

— отключить все электроприем­ники и взвести ВД. Если ВД взво­дится, то это свидетельствует о на­личии электроприемника с повреж­денной изоляцией. Неисправность выявляется путем последователь­ного подключения электроприемни­ков до момента срабатывания ВД. Поврежденный электроприемник необходимо отключить. Проверить работоспособность ВД нажатием кнопки «ТЕСТ»;

— если при отключенных электроприемниках ВД продолжает срабатывать, необходимо вызвать квалифицированного специалиста- электрика для определения харак­тера повреждения электроустанов­ки или выявления неисправности ВД.

Проверка осуществляется на­жатием кнопки «ТЕСТ». Немедлен­ное срабатывание ВД и отключение защищаемой электроустановки означают, что ВД исправно.

Последние вопросы:

Подписка на обновления Подписывайтесь и получайте свежую и интересную информацию прям на свой почтовый ящик

УЗО представляет собой отдельный тип защитных электроаппаратов наряду с автоматическими выключателями (АВ). Хотя их назначением является именно электрозащита, как и у АВ, но принципы работы у них отличаются.

Зачем нужны УЗО, если есть АВ?

С течением времени электроизоляция токоведущих частей электроприборов, включая ТЭНы, провода, шнуры питания и кабели, неизбежно стареет. И тогда с них через токопроводящие корпуса различных электроприборов в землю начинают протекать так называемые токи утечки, величиной от нескольких десятков микроампер до единиц миллиампер.

Обычные АВ на появление токов утечки никак не реагируют - ведь они составляют ничтожные доли от номинальных токов электропотребителей. Однако их появление (точнее, превышение токами некоторого допустимого предела) является сигналом тревоги. Это предупреждение о приближении аварийной ситуации, и для ее предотвращения нужен специальный защитный электроаппарат - УЗО.

Кроме того, как известно, неотпускающий (судорожный) ток, представляющий для человека (при определенном времени воздействия) смертельную опасность, равен всего 10 мА. Поэтому необходимость создания защитных устройств, реагирующих на токи утечки в этом диапазоне величин, ощущалась с самого начала широкого проникновения электричества в быт.

Пояснение работы устройства

Попробуем объяснить принцип работы УЗО при помощи гидравлической аналогии. Будем считать, что вода протекает по замкнутому контуру водяного отопления так же, как и электроток по проводам. Если где-то в отопительной трубе возникает дыра, то через нее идет утечка воды. Поэтому ее расход (аналог электротока) через два сечения труб, одно из которых на входе контура, а другое - на его выходе, будет разным. Точно так же и с токами утечки в электроприборе. Можно сравнить, сколько тока входит в электроприбор, и сколько выходит. В однофазный электроприбор ток входит по фазному проводу, а выходит по нулевому, поэтому достаточно сравнить токи в этих двух проводах. В этом и состоит принцип работы УЗО в однофазной сети. Если величины тока на входе и на выходе электроприбора не одинаковы, то оно за время порядка нескольких миллисекунд отключает его от сети. Такое малое время срабатывания необходимо потому, что превышение токами утечки величины тока срабатывания УЗО могло быть вызвано именно прикосновением человека к токопроводящему корпусу прибора.

Ток срабатывания

Но чтобы работа УЗО стала эффективной в бытовых условиях, понадобилось немало времени. Прежде всего, нужно было точно определиться с величиной тока утечки, который был бы безопасен для человека на время срабатывания устройства. Попытки проектировать УЗО на токи утечки менее 10 мА приводили к созданию больших, сложных и дорогих устройств, причем склонных к ложным срабатываниям от различных электромагнитных наводок.

К началу 80-х годов ХХ в. ток их срабатывания, на основании опытов с добровольцами, был выбран величиной в 30 мА, а также были созданы малогабаритные трансформаторы с ферритовыми кольцевыми сердечниками (их называют дифференциальными), ставшие датчиками токов утечки. В продажу поступили электромеханические дифференциальные УЗО-ДМ с током срабатывания от 20 до 30 мА, являющимися сегодня самыми популярными в быту. Обычно литеры ДМ опускают, и прибор называют просто УЗО.

Принцип работы УЗО и схема подключения

Токи, протекающие по фазному и нулевому проводникам в разных направлениях, возбуждают в кольцевом сердечнике трансформатора устройства два одинаковых по величине магнитных потока Ф1 и Ф2, однако векторы магнитной индукции, соответствующие этим потокам, направлены в сердечнике встречно и взаимно компенсируют друг друга. Поэтому суммарный магнитный поток в сердечнике равен нулю, как и ЭДС во вторичной обмотке трансформатора.

Если вследствие дефекта изоляции появляется ток утечки, близкий к току срабатывания, то Ф1 ≠ Ф2, в сердечнике возникает магнитный поток, наводящий в выходной обмотке ЭДС, способный создать ток, достаточный для срабатывания порогового элемента УЗО. Далее оттягивается защелка силовой контактной группы, и ее контакты размыкаются. Таков принцип работы УЗО всех типов.

Во всех типах таких устройств предусмотрена кнопка «Тест», при нажатии на которую искусственно создается ситуация утечки тока для проверки срабатывания устройства. Флажок или кнопка с самофиксацией служат для повторного включения УЗО после тестового срабатывания.

Разновидности УЗО

Известны электромеханические и электронные типы таких защитных аппаратов. Принцип работы УЗО и схема подключения обоих типов одинаковы, однако приборы первого типа не нуждаются в электропитании и обладают простой и надежной конструкцией. Для их срабатывания хватает тока утечки в защищаемом электроприборе.

Электронное УЗО нуждается в подаче на него напряжения питания, так как в нем пороговый элемент выполнен в виде электронной схемы, усиливающей малый ток в выходной обмотке его трансформатора и создающей импульс для исполнительного реле.

В связи с этим и сам трансформатор электронного УЗО меньших размеров, габаритов и мощности. Модуль порогового элемента с усилителем питается от контролируемой цепи, и если в цепи его питания произойдет обрыв проводника, то такое устройство потеряет работоспособность. Имеются и другие риски при работе электронных УЗО. Например, выход из строя его электронных компонентов при импульсных перенапряжениях в питающей сети.

Поскольку надежность электронных УЗО ниже, чем у электромеханических, то и стоимость их меньше.

Трехфазное УЗО

У трехфазного аппарата, в отличие от однофазного, четыре полюса вместо двух, поскольку нулевой проводник проходит через оба типа устройств. Принцип работы трехфазного УЗО такой же, как и у однофазного.

Сердечник его трансформатора охватывает четыре проводника - три фазных и один нулевой. Суммарный ток в трех фазных проводах (т. н. ток нулевой последовательности) всегда равен по величине току в нулевом проводе и противоположен ему по направлению (внутри УЗО). В этом случае сердечник трансформатора не намагничен, в его выходной обмотке тока нет. Если в защищаемом приборе появился ток утечки, то в сердечнике появляется переменный магнитный поток, наводящий ЭДС в выходной обмотке трансформатора. По ней начинает протекать ток, пропорциональный току утечки, и если ток утечки превышает ток срабатывания, то УЗО отключает электроприбор. Баланс токов в контрольном органе УЗО нарушается, и оно срабатывает.

Трехфазное УЗО без нулевого проводника

Для защиты от токов утечки асинхронных электродвигателей, обмотки которых соединены в треугольник или в звезду с невыведенной нейтралью, применяется подключение 4-полюсного УЗО с незанятой нулевой клеммой. При отсутствии токов утечки в фазах электродвигателя, сумма токов в фазных проводах очень мала и неспособна вызвать срабатывание защиты. Появление тока утечки из фазных проводов через корпус двигателя в землю вызывает циркуляцию через трансформатор УЗО тока нулевой последовательности, на который и реагирует электроаппарат. Общий принцип работы УЗО и в этом случае не изменяется.

Особенности применения одно- и трехфазных УЗО

Трехфазные 4-полюсные аппараты имеют довольно большие токи срабатывания, что позволяет применять их только для противопожарной защиты, как и АВ с тепловыми расцепителями. Защиту же групповых линий на розетки в комнатах, кухне и ванной, либо защиту отдельных линий питания мощных электроприборов (стиральных и посудомоечных машин, электроплит, электроводонагревателей) следует выполнять на 2-полюсных однофазных УЗО с установкой номиналов по токам утечки от 20 мА до 30 мА.

Для того чтобы работа УЗО в однофазной сети была безопасной, оно само должно быть защищено от перегрузки по току (при длительной непрерывной работе исправного электроприбора), установленным перед ним АВ с тепловым расцепителем.

Работа УЗО без заземления

Как известно, в старых домах советской постройки квартирные электропроводки не имели отдельного нулевого защитного проводника, подключаемого к контуру заземления. Предполагалось, что его функцию исполняет нулевой рабочий проводник (т. н. система электроснабжения TN-C с общими нулевыми рабочим и защитным проводниками). А поскольку во всех изданиях ПУЭ есть запрет на установку в защитных проводниках аппаратов защиты, то 2-полюсные УЗО, разрывающие одновременно и фазу и нуль, также попадают под запрет. Даже последняя 7-я актуальная редакция ПУЭ в п. 7.1.80 подтвердила недопустимость установки УЗО в сетях по системе TN-C. Дело в том, что были зафиксированы случаи поражения электротоком во время их срабатывания.

Причиной этого стала разновременность срабатывания контактов устройств, составляющая единицы милисекунд. Но если первым отключался контакт в нулевом проводе, то при пробое изоляции на корпус бытового электроприбора потребитель оказывался под полным фазным напряжением, так что этих нескольких милисекунд вполне хватало для смертельного поражения.

Для квартир без нулевых защитных проводников устанавливать общеквартирное УЗО недопустимо, но отдельные такие аппараты можно устанавливать в групповые розеточные линии с общим защитным проводником или в линии питания отдельных электроприборов, если защитные проводники розеточных групп или розеток по кратчайшему пути заведены на их входные нулевые клеммы.

В этом случае разрыв внутри УЗО нулевого рабочего провода раньше фазного не приводит к разрыву защитного проводника электроприбора, так как участок защитного проводника от входной нулевой клеммы через розетку и шнур питания электроприбора останутся неповрежденными.