Технология проведения ГРП. Применение гидравлического разрыва пласта на нефтяных и газовых месторождениях Применяют ли грп для газовых скважин

Гидравлический разрыв пласта (ГРП) - технологический процесс увеличения проницаемости призабойной зоны продуктивного пласта за счет образования трещин или расширения и углубления в нем естественных трещин. Сущность этого процесса заключается в нагнетании в призабойную зону жидкости под высоким давлением, превышающем местное горное давление и прочностные свойства породы пласта.

ГРП применяется:

Для интенсификации добычи нефти из скважин с сильно загрязненной призабойной зоныой за счет создания трещин;

С целью обеспечения гидродинамической связи скважины с ситемой естественных трещин пласта и расширения оны дренирования;

Для ввода в разработку низкопроницаемых залежей и перевода забалансовых запасов нефти в промышленные;

При вводе в разработку сложнопостроенных и неоднородных пластов с целью увеличения темпов отбора нефти и повышения конечного нефтеизвлечения;

Для увеличения продуктивности нефтяных скважин;

Для увеличения приемистости нагнетательных скважин;

В скважинах с высоким пластовым давлением, но с низкой проницаемостью пласта.

Не рекомендуется проводить ГРП в скважинах, расположенных вблизи водонефтяных и газонефтяных зон, в которых возможно ускоренное конусообразование и прорыв воды и газа в добывающие скважины; в истощенных пластах с низкими остаточными запасами, а также в карбонатных коллекторах с хаотичной трещиноватостью.

ГРП производят в следующем порядке. В скважину спускаются НКТ, а выше кровли продуктивного пласта, в котором планируется провести ГРП, устанавливают пакер и якорь. Скважину промывают водой с целью очистки забоя от глины и механических примесей. При необходимости иногда перед ГРП проводят соляно-кислотную обработку или дополнительную перфорацию. В таких случаях снижается давление разрыва и повышается его эффективность. Затем в скважину по НКТ (диаметр НКТ не менее 89 - 114 мм, трубы меньшего диаметра при ГРП применять нецелесообразно, так как при прокачке жидкости в них возникают большие потери давления) нагнетается жидкость разрыва в объемах, необходимых для создания на забое давления, необходимого для разрыва пласта. Для предохранения обсадной колонны от воздействия высокого давления над разрываемым пластом устанавливается пакер. Он полностью разобщает зону продуктивного пласта от вышележащей части скважины. При этом давление, создаваемое насосами, действует только на пласт и на нижнюю часть пакера. Устанавливают гидравлический якорь для не допущения смещения пакера.

Жидкости для ГРП разделяются на три категории: жидкость разрыва, жидкость-песконоситель и продавочная жидкость.

Рабочие жидкости не должны уменьшат ни абсалютную, ни фазовую проницаемость породы продуктивного пласта. В этой связи при ГРП в нфтяных скважинах применяют жидкости на углеводородной основе, а в нагнетательных и в нефтяных скважинах, предназначенные для перевода в нагнетательные – на основе воды. Однако в скважинах с карбонатными коллекторами в качестве рабочих жидкостей могут быть использованы водные растворы соляной кислоты или другие жидкости на ее основе.


Жидкость разрыва пласта должна хорошо проникать в пласт и в естественно существующие в нем трещины. Жидкости разрыва в основном применяются:

1. углеводородные

2. водные растворы

3. эмульсии

Рабочие жидкости для ГРП не должны содержать мех.примесей, а при соприкосновении с породой и пластовой жидкостью не должна образовывать нерастворимых осадков.

Наибольшее предпочтение при ГРП должно отдаваться жидкостям, полностью растворимым в пластовых жидкостях. Во время проведения ГРП вязкость рабочих жидкостей должна быть стабильной.

Жидкость-песконоситель - это жидкость, используемая для подачи песка с поверхности в полученные трещины. Жидкость-песконоситель должна быть нефильтрующейся или с быстро снижающейся фильтруемостью, а также должна иметь высокую пескоудерживающую способность. В качестве жидкостей-песконосителей применяются те же жидкости, что и для разрыва пласта.

Наполнитель служит для образовавшихся трещин и недопущения их смыкания при снятии давления. Для закрепления трещин, образуемых во время ГРП, применяют кварцевый песок с размером зерен 0.4 - 1.2 мм. Такой песок испытывают в лабораторных условиях на прочность и вдавливаемость в поверхность горных пород, в которых образуется трещина, а также на остаточную проницаемость (проницаемость после сдавливания песка под прессом, имитирующим действие горного давления). Песок для заполнения трещин при ГРП должен удовлетворять следующим требованиям: а) иметь высокую механическую прочность, чтобы образовывать надежные песчаные подушки в трещинах, и не разрушаться под действием веса пород; б) сохранять высокую проницаемость. Таким является крупнозернистый, хорошо скатанный и однородный по гранулометрическому составу кварцевый песок. В случаях высокого горного давления или непрочной поверхности горных пород, в которых образуется трещина, применяют искусственный керамический или иной расклинивающий материал.

При первых ГРП следует вводить в каждую трещину не менее 1,5-2т песка.

При закачке в пласт больших количествах песка (более 15-20т) с целью более глубокового проникновения его по трещинам, первые порции песка (30-40%) закачивают мелкозернистым песком мелкой (0,4-0,6мм) фракции с последующим переходом на закачку песка более крупной фракции.

Современное проектирование ГРП состоит из двух принципиально различающихся частей.

В первой части проектирования устанавливают цель ГРП, определяют скважины, пласты и пропластки для ГРП, а также рассчитывают размеры (длину, ширину) трещин, которые нужно образовать. Обычно эту часть проектирования ГРП выполняет предприятие или его отдел (геологический, разработки, повышения нефтеотдачи) , ведущие разработку месторождений или какого-то объекта. По заказу предприятие проектирование может быть, также, поручено научно-исследовательской организации.

Вторая часть проектирования связана непосредственно с выбором параметров ГРП обеспечивающих в выбранных скважинах такие темпы закачки и объемы закачанных в трещины жидкостей и песка, которые позволяют создать в пласте трещины с размерами и пропускной способностью, запроектированной в первой части. Эта часть проектирования состоит в расчетах процесса образования трещины заполнения и закрепления ее песком. Во второй части проектирования ГРП выбирают также эффективные жидкости разрыва с соответствующими свойствами и песок (расклинивающий материал). Вторую часть проектирования ГРП выполняет обслуживающая ("сервисная") фирма, которая обычно и осуществляет операцию ГРП.

В полный комплект оборудования для гидравлического разрыва пластов входят насосный и пескосмесительный агрегаты, автомотоцистерна, блок манифольд и арматура устья.

Устье скважины оборудуется специальной головкой, к которой подключаются агрегаты для нагнетания в скважину жидкостей разрыва. Для осуществления гидроразрыва могут применяться: насосные агрегаты 4АН-700, модернизированные 5АН-700 или рамные АНР-700. Максимальное давление этих агрегатов 70 МПа при подаче 6 л/с, при давлении 20 МПа подача составляет 22 л/с. Насосные агрегаты с помощью быстросъемных гибких соединений из труб подключаются к блоку манифольда, который, в свою очередь, соединяется с арматурой устья.

На практике нередко применяют поинтервальный гидрорарыв. Поинтервальный, применяется, когда несколько пластов разрабатываются общим фильтром, а пласты изолированы друг от друга слоями непроницаемых пород.

Применяется также направленный ГРП. При направленном ГРП с помощью пескоструйной перфорации производится дополнительная перфорация в заданном интервале продуктивного пласта, в котором планируется получить трещины. При этом применяется как «точечная» гидропескоструйная перфорация, так и щелевая.

Одной из эффективных новых технологии ГРП явяется технология осаждения проппаната на конце трещины (или концевое экранирование трещин (TSO)), которая позволяет целенаправленно увеличивать ширину трещины, останавливая ее рост в длину, за счет чего значительно увеличивается проводимость. Для интенсификации выработки запасов из низкопроницаемых слоев и снижению риска попадания трещины в водоносные или газоносные пласты применяется технология селективного гидроразрыва.

Для восстановления и улучшения отдачи эксплуатационных скважин применяют различные методы воздействия. Одним из эффективных методов интенсификации разработки нефтяных площадей является гидравлический разрыв пластов.

Гидравлический разрыв пласта (ГРП) - технологический процесс увеличения проницаемости призабойной зоны путем расчленения породы пласта или расширения естественных трещин. Сущность этого процесса заключается в нагнетании в призабойную зону жидкости под высоким давлением, превышающем местное горное давление и прочностные свойства породы пласта.

В практике РП давления, при которых происходит разрыв пласта, как правило, ниже полного горного давления для глубоких скважин и равны или несколько выше, чем полное горное давление для скважин небольшой глубины. В большинстве случаев давление разрыва на забое превышает в 1.5-2 раза гидростатические давление. Однако, определение теоретическим путем давления разрыва пласта является чрезвычайно трудным делом и в настоящее время надежных методов, устанавливающих зависимость давления разрыва пласта от прочности породы, не имеется. Васильев Ю.В. и Кривоносов И.З. на основании обработки большого фактического материала нашли, что давление разрыва в пластах, залегающих на глубине до 1100м, превышает горное давление, а при глубинах от 1100 до 4500 м давление разрыва значительно меньше полного горного давления. Гидроразрыв при давлении ниже геостатического объясняют разгрузкой горного давления вследствие деформации пластических пород в разрезе, вскрытом скважиной, наличием естественной трещиноватости в продуктивных пластах и образованием вертикальных трещин. Зайцев Ю.В. и Плющ А.М. в результате обработки фактических промысловых материалов пришли к заключению, что давление, необходимое для производства разрыва пластов, укладывается в пределах 1.34¸2.12 от полного горного давления, т.е. p раз = (1.34¸2.12)mH, где H – глубина залегания пласта; m – средний градиент давления от вышележащих пород. Давление жидкости на забой скважины р заб при проведении ГРП определяется по формуле: р заб = р уст +р ст -р тр -Dр, где р уст – давление у устья скважины или на нагнетательной стороне насоса, установленного на агрегате, р ст – суммарное гидростатическое давление на забой от нескольких жидкостей, присутствующих в скважине; р тр – суммарные потери давления на преодоление гидравлического сопротивления труб течению жидкостей; Dр – потери давления при прохождении жидкости разрыва через перфорационные отверстия. Давление, необходимое для осуществления ГРП, может быть найдено из условия: р заб ³р раз. Для упрощения задачи совершим переход от этого условия к давлению, развиваемому агрегатом, при котором произойдет ГРП. Из приведенных выше формул следует, что р уст ³(1.34¸2.12)mH-р ст +р тр +Dр. Если отсутствуют данные о давлениях гидроразрыва, то в исключительных случаях его можно определить по формуле p раз = 0.0083H+0.66р пл (здесь р пл - пластовое давление на глубине определения гидроразрыва, МПа).

Сохранение трещин в открытом состоянии при снижении давления в скважине обеспечивается закачкой в них вместе с жидкостью отсортированного кварцевого песка.

После ГРП, закачанная рабочая жидкость, частично профильтровываясь в пласт, извлекается из трещин, песок или иной расклинивающий трещину материал остается в ней, удерживая поверхности трещин от смыкания под действием горного давления. Таким образом, вблизи скважины создают трещину - высоко проводящий канал, в который поступают нефть и газ из зон пласта, связанных с этим каналом. Производительность скважин после ГРП обычно возрастает в несколько раз.

Гидравлический разрыв пласта применяется: для увеличения продуктивности нефтяных скважин, для увеличения приемистости нагнетательных скважин, для регулирования притоков или приемистости по продуктивной мощности скважины, для создания водоизоляционных экранов в обводненных скважинах.

Для гидроразрыва пласта рекомендуются скважины следующих категорий: скважины, давшие при опробовании слабый приток нефти, скважины с высоким пластовым давлением, но с низкой проницаемостью коллектора, скважины, имеющие заниженный дебит против окружающих, скважины с загрязненной призабойной зоной, скважины с высоким газовым фактором, нагнетательные скважины с низкой приемистостью, нагнетательные скважины с неравномерной приемистостью по продуктивному разрезу.Разрыв пласта не рекомендуется проводить: в нефтяных скважинах, расположенных вблизи контура нефтеносности, в скважинах, технически неисправных.

Эффективность процесса ГРП в основном зависит от параметров образовавшихся трещин и продуктивности зон, ими вскрытых. Максимальный эффект от ГРП обеспечивается: наибольшей шириной, создаваемых в пласте трещин, распространением трещин по пласту на максимальное расстояние от забоя скважины, создание трещин в наиболее продуктивной зоне пласта.

По направлению трещин различают горизонтальный и вертикальный гидравлические разрывы пластов. В зависимости от технологической схемы осуществления процесса ГРП, можно подразделить на: однократный, многократный.

Кроме того, различают гидравлический разрыв пластов с магнием, гидравлический разрыв в сочетании с пескоструйной перфорацией, многоэтапный разрыв кислотой и др.

Очень часто проницаемость нефтяного пласта по мощности оказывается в 5-6 раз меньше, чем проницаемость его по простиранию. В таких случаях для увеличения притока к забою эксплуатационных скважин и повышения приемистости нагнетательных скважин создают вертикальные трещины продуктивного пласта и одновременно углубляют по его простиранию (горизонтально). Теория показывает, что вертикальные трещины по мощности образуются при нагнетании абсолютно нефильтрующейся жидкости разрыва в малопроницаемые пласты. Для создания вертикальных трещин требуются меньшие давления, чем для образования горизонтальных.

Многократный или поинтервальный разрыв пласта заключается в поочередном создании нескольких трещин в мощных, расчлененных продуктивных пластах, находящихся в фильтровой зоне скважине. Для получения многократного разрыва (несколько трещин по всей мощности пласта, вскрытого перфорацией) используются различные закупоривающие вещества: нефтенат кальция, полуэбонитовые упругие шарики и др. В процессе проведения гидроразрыва эти вещества производят последовательную закупорку трещин или перфорационных отверстий, а после образования и крепления трещин растворяются или удаляются продукцией скважины.

Образованные в пласте трещины или открывающиеся и расширившиеся, соединяясь с другими, становятся проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин в глубь пласта может достигать нескольких десятков метров. Образовавшиеся в породе трещины шириной 1-2 мм, заполненные крупнозернистым песком, обладают значительной проницаемостью. Дебиты скважин после гидроразрыва пласта часто увеличиваются в несколько раз.

Операция ГРП состоит из следующих последовательно проводимых этапов: 1) закачка в пласт жидкости разрыва для образования трещин; 2) закачка жидкости-песконосителя; 3) закачка жидкости для продавливания песка в трещины.

Технология гидроразрыва пласта состоит в следующем. Вначале забой скважины очищают от песка и глины и отмывают стенки от загрязняющих отложений. Иногда перед ГРП целесообразно проводить соляно-кислотную обработку или дополнительную перфорацию. В таких случаях снижается давление разрыва и повышается его эффективность.

В промытую и очищенную скважину спускают трубы диаметром не менее 89 мм (89 - 114 мм), по которым жидкость разрыва направляется к забою. Трубы меньшего диаметра при ГРП применять нецелесообразно, так как при прокачке жидкости в них возникают большие потери давления. Для предохранения обсадной колонны от воздействия высокого давления над разрываемым пластом устанавливается пакер. Он полностью разобщает фильтровую зону скважины от ее вышележащей части, при этом давление, создаваемое насосами, действует только на фильтровую зону и на нижнюю поверхность пакера.

Процесс разрыва начинается с установления зависимости приемистости скважины от давления нагнетания жидкости. На практике такая зависимость определяется следующим образом. Включается в работу на первой или второй скорости один из насосных агрегатов, и закачивается в скважину жидкость разрыва до тех пор, пока не установится давление на устье. Обычно для этого требуется 10-15 мин. Измеряются давление и расход жидкости. Затем темп нагнетания увеличивается, измеряется новый расход жидкости и также фиксируется давление.Таким образом, путем увеличения темпов нагнетания жидкости снимается зависимость расхода жидкости от давления, по которой определяются момент расслоения пласта и ожидаемое давление нагнетания песчаножидкостной смеси. Типовой график такой зависимости приведен на рисунке. Если коэффициент приемистости, т. е. отношение расхода жидкости к давлению нагнетания, при максимальном расходе жидкости возрастет не менее чем в 3-4 раза по сравнению с коэффициентом приемистости при работе одного насосного агрегата на низшей скорости, то в пласте образованы трещины и можно приступать к закачке жидкости-песконосителя с песком. В случае, когда разрыв пласта, несмотря на максимально возможные темпы нагнетания жидкости разрыва, не зафиксирован, процесс повторяют с применением жидкости повышенной вязкости, обладающей минимальной фильтруемостью. Операции по определению зависимости приемистости от давления нагнетания для новой жидкости разрыва осуществляются в вышеуказанной последовательности. После установления факта разрыва пласта с целью дальнейшего развития трещин и облегчения ввода песка в них рекомендуется перед жидкостью-песконосителем в скважину закачивать 3-4 м 3 слабофильтрующейся жидкости повышенной вязкости. Закачка жидкости с песком в образовавшиеся трещины производится при максимально возможных темпах нагнетания. Объемная скорость закачки жидкости-песконосителя должна быть не ниже объемной скорости, при которой зафиксирован разрыв пласта.

Продавочная жидкость нагнетается непосредственно за песчаножидкостной смесью без снижения темпов закачки. Объем продавочной жидкости должен быть равным или больше объема колонны труб, по которой происходило нагнетание смеси песка с жидкостью.

В качестве рабочего агента при гидравлическом разрыве пласта используются различные жидкости, обладающие разнообразными физическими параметрами.

Эти жидкости по назначению делят на три категории: жидкость разрыва, жидкость - песконоситель и продавочную жидкость. Название каждой из жидкостей соответствует ее целевому назначению - выполняемой операции. Рабочие жидкости всех трех категорий должны удовлетворять следующим общим требованиям.

1. При фильтрации жидкостей с углеводородной основой (нефть, керосин, соляровое масло, эмульсии типа вода в масле и т.д.) через водонасыщенные породы фазовая проницаемость последних для воды существенно снижается. Точно также снижается фазовая проницаемость нефтенасыщенных пород для углеводородных жидкостей после фильтрации через них жидкостей с водной основой. Поэтому, при ГРП в нефтяных скважинах применяют жидкости с углеводородной основой, а в нагнетательных - с водной.

Исключением из этого правила являются: а) нефтяные скважины с пластами, представленные карбонатными породами, где в качестве рабочих жидкостей при гидроразрыве могут быть использованы водные растворы соляной кислоты или другие жидкости на ее основе; б) нефтяные скважины, предназначенные для перевода в нагнетательные, где при гидравлическом разрыве пласта могут быть использованы жидкости на водной основе.

3. Рабочие жидкости для гидравлического разрыва пласта должны обладать свойствами, обеспечивающими наиболее полное их удаление из созданных трещин и порового пространства пород. При этом предпочтение должно быть отдано рабочим жидкостям, полностью растворимым в пластовых жидкостях.

4. Вязкость рабочих жидкостей должна быть стабильна в условиях обрабатываемого пласта в пределах времени проведения процесса гидроразрыва.

Назначение каждой из вышеперечисленных категорий рабочих жидкостей и требования к ним следующие.

Жидкость разрыва является тем рабочим агентом, нагнетание которого в обрабатываемом пласте создается давление разрыва, т.е. давление, обеспечивающее нарушение целостности пород пласта с образованием новых трещин или вскрытие (расслоение) уже существовавших естественных трещин. К жидкостям разрыва предъявляются следующие дополнительные требования: а) для образования трещин в пласте представленном породами различной проницаемости, при различной степени трещиноватости необходимо располагать жидкостями разрыва вязкостью 300 мПа*с и выше; б) при разрыве ненарушенных пластов, лишенных естественной трещиноватости, жидкость разрыва должна обладать хорошей фильтруемостью через пористую среду.

Жидкость-песконоситель - это жидкость, используемая для подачи песка с поверхности в полученные трещины. В качестве жидкости разрыва и жидкостей-носителей расклинивающего материала (песка и др.) для ГРП в нефтяных скважинах применяют собственную дегазированную нефть, нефте-мазутные и другие смеси, гидрофобные водо-нефтяные эмульсии, загущенную соляную кислоту и др. В нагнетательных же скважинах, в качестве жидкости разрыва используют нагнетаемую воду, водные растворы соляной кислоты, гидрофильные нефте-водные эмульсии и др.

К жидкости-песконосителю предъявляются следующие требования: а) должна быть нефильтрующейся или обладать минимальной быстро снижающейся фильтруемостью; б) должна иметь высокую пескоудерживающую способность. Как первое, так и второе требования необходимы для обеспечения условий надежного закрепления и развития созданных трещин.

Свойства жидкостей разрыва и жидкостей песконосителей определяют как в стационарных лабораторных условиях, так и в передвижной лаборатории в процессе ГРП.

Размер песчинок расклинивающего материала составляет 0.4 - 1.2 мм. Такой песок испытывают в лабораторных условиях на прочность и вдавливаемость в поверхность горных пород, в которых образуется трещина, а также на остаточную проницаемость (проницаемость после сдавливания песка под прессом, имитирующим действие горного давления). Песок для заполнения трещин при ГРП должен удовлетворять следующим требованиям: а) иметь высокую механическую прочность, чтобы образовывать надежные песчаные подушки в трещинах, и не разрушаться под действием веса пород; б) сохранять высокую проницаемость. Таким является крупнозернистый, хорошо скатанный и однородный по гранулометрическому составу кварцевый песок. В случаях высокого горного давления или непрочной поверхности горных пород, в которых образуется трещина, применяют искусственный керамический или иной расклинивающий материал.

Продавочная жидкость - это жидкость, применяемая для продавки в обрабатываемый пласт жидкости разрыва и в созданные трещины - смеси жидкости-песконосителя с песком. Продавочная жидкость при всех условиях должна обладать минимальной вязкостью.

Практически повсеместно, в качестве продавочной жидкости при ГРП в нагнетательных скважинах применяют нагнетаемую воду, а в нефтяных - собственную дегазированную нефть.

Кроме указанных выше, при ГРП используют также антикоррозийные жидкости, вещества, предотвращающие размножение бактерий в пласте, поверхностно-активные вещества, кислоты и др.

Современное проектирование ГРП состоит из двух принципиально различающихся частей.

В первой части проектирования устанавливают цель ГРП, определяют скважины, пласты и пропластки для ГРП, а также рассчитывают размеры (длину, ширину) трещин, которые нужно образовать. Обычно эту часть проектирования ГРП выполняет предприятие или его отдел (геологический, разработки, повышения нефтеотдачи) , ведущие разработку месторождений или какого-то объекта. По заказу предприятие проектирование может быть, также, поручено научно-исследовательской организации.

Вторая часть проектирования связана непосредственно с выбором параметров ГРП обеспечивающих в выбранных скважинах такие темпы закачки и объемы закачанных в трещины жидкостей и песка, которые позволяют создать в пласте трещины с размерами и пропускной способностью, запроектированной в первой части. Эта часть проектирования состоит в расчетах процесса образования трещины заполнения и закрепления ее песком. Во второй части проектирования ГРП выбирают также эффективные жидкости разрыва с соответствующими свойствами и песок (расклинивающий материал). Вторую часть проектирования ГРП выполняет обслуживающая ("сервисная") фирма, которая обычно и осуществляет операцию ГРП.

В полный комплект оборудования для гидравлического разрыва пластов входят насосный и пескосмесительный агрегаты, автомотоцистерна, блок манифольд и арматура устья.

Устье скважины оборудуется специальной головкой, к которой подключаются агрегаты для нагнетания в скважину жидкостей разрыва. Для осуществления гидроразрыва могут применяться: насосные агрегаты 4АН-700, модернизированные 5АН-700 или рамные АНР-700. Максимальное давление этих агрегатов 70 МПа при подаче 6 л/с, при давлении 20 МПа подача составляет 22 л/с. Насосные агрегаты с помощью быстросъемных гибких соединений из труб подключаются к блоку манифольда, который, в свою очередь, соединяется с арматурой устья.

Система автоматизации, защиты и управления стационарными установками. Диспетчерский пульт нефтепромысла. Контролируемые параметры по объектам (скважина, ГЗУ, ДНС, УПН, КСУ и т.д.).

Технологическая схема сбора и подготовки нефти, газа и воды имеет следующий вид. Добытая нефть со скважины направляется на групповую замерную установку (ГЗУ). С ГЗУ нефть направляется на дожимную насосную станцию (ДНС) для откачки нефти на установку подготовки нефти (УПН). На УПН нефть направляется через сепаратор (отделение газа от нефти), в горизонтальный отстойный аппарат предварительного обезвоживания, откуда нефть насосами подается в печи (подогрев 48-52 °С) и отстойные аппараты глубокого обезвоживания. После них нефть поступает через смеситель в отстойники для обессоливания и в резервуар товарной нефти. Из него нефть насосами узел учета нефти направляется в магистральный нефтепровод (МН). Вода из отстойников обезвоживания и обессоливания поступает в резервуары сточных вод и далее насосами подается на кустовую насосную станцию (КНС) системы поддержания пластового давления (ППД). Газ, выделившийся в процессе подготовки нефти, в Удмуртии сжигается на факелах.

В процессе промысловой подготовки нефти и воды используются средства контроля и измерений общетехнологических параметров.

Измерение давления Для измерения давления используют манометры, вакуумметры, мановакуумметры. Для сигнализации применяют электроконтактные манометры ЭКМ или ВЭ-16рб, выполненные во взрывобезопасном исполнении. Для дистанционного, непрерывного преобразования абсолютного и избыточного давления, разряжения, разности даления жидких и газообразных сред в пропорциональное значение выходного сигнала постоянного тока используют тензорезисторные измерительные преобразователи «Сапфир-22», «Мид», «Корунд», «КРП» в комплекте с унифицированными блоками, преобразующими изменения сопротивления тензопреобразователя в токовый сигнал.

Измерение температуры Для измерения температуры применяют термоэлектрические термометры (термопары – хромель-копелевые или хромель-алюмелевые), термопреобразователи (термометры) сопротивления (платиновые ТСП или медные ТСМ), жидкостные стеклянные термометры и манометрические термометры. В качестве вторичной аппаратуры индикации и защиты по температуре в настоящее время хорошо зарекомендовали себя «УМС-4», «УКТ-38».

Измерение уровня, уровня раздела Приборами для контроля уровня раздела жидкостей оборудуют, как правило, каждый отстойный аппарат или электрогидратор. В настоящее время в Удмуртии используют приборы, которые автоматически дистанционно непрерывно измеряют уровни жидкости, отображают результат измерения на цифровом дисплее, а также осуществляют контроль верхнего и нижнего предельных уровней с выдачей токовых сигналов в систему управления:

Двухканальный регулятор уровня раздела фаз нефть-вода. В комплект регулятора входят: датчик уровня жидкости ДУЖ-1М, блок автоматики БА-1 и электрическое исполнительное взрывозащищенное устройство УЭРВ. В качестве чувствительного элемента в уровнемере ДУЖ-1М используют поплавки, перемещающиеся по немагнитной трубе, внутри которой размещены герметизированные магнитоуправляемые контакты-герконы.

Двуххканальный регулятор уровня раздела фаз нефть-вода «ВК-1200», «У-1500». Конструктивно уровнемер состоит из двух частей – первичного и вторичного преобразователей, выполненные во взрывобезопасном исполнении. Первичний преобразователь состоит из датчика и иэлектронного блока. Датчик содержит вертикально установленную гибкую трубу с размещенным в ней ферромагнитным звуководом, электроакустический излучатель и поплавки с постоянными магнитами, перемещающихся свободно вдоль трубы. Сигналы с первичного преобразователя обрабатываются во вторичном преобразователе. Принцип действия уровнемера заключается в измерении времени прохождения ультрозвуковой волной расстояния от излучателя до верхнего поплавка (уровень нефти) и измерении времени прохождения ультрозвуковой волной пути от конца стержня и обратно до второго поплавка (уровень воды).

Измерение расхода Применяемые в отрасли расходомеры устанавливаются на всем протяжении технологического процесса сбора и подготовки нефти. Различают следующие виды расходомеров, которые применяют на данный момент:

Расходомеры переменного давления в сужающем устройстве. В качестве сужающего устройства используется диафрагма, установленная в трубе. Принцип действия приборов основан на преобразовании измеряемой величины перепада давления в электрический сигнал или сразу в величину расхода, передаваемых на вторичный прибор (первичные преобразователи - дифманометры ДМ, Сапфир-22; вторичные преобразователи – ДСС, КСД).

Турбинные расходомеры различают следующих типов: Норд, Миг, Турбо-Квант, которые включают в себя первичный преобразователь расхода (ТПР) – турбинка, размещенная в трубе вдоль оси трубопровода; электромагнитный датчик, преобразующий частоту вращения турбинки в электрический импульсы; вторичный электронный блок индикации расхода и объема, прошедшего через турбинку.

Турбинный объемный счетчик типа ТОР1-50 предназначен для измерения объема жидкости, который устанавливается в трубу. Принцип действия заключается в преобразовании числа оборотов турбинки в объем протекающей жидкости.

Ультрозвуковые расходомеры стационарные и переносные типа «Взлет», «РТ-868», основанные на измерении скорости распространения ультрозвука с помощью первичных ультрозвуковых датчикв, устанавливаемых на (в) трубу и преобразования вторичными электронными блоками в расход.

Диспетчерский пульт нефтепромысла. На сегодняшний день для автоматического дистанционного контроля и управления за работой нефтяного оборудования в нефтедобыче используется телемеханический комплекс под условным названием «Атлас», включающий в себя оборудование пункта управления (ПУ) и контролируемого пункта (КП). В составе ПУ имеется компьютер IBM PC, с соответствующим программным обеспечением через интерфейс связи, а на КП устанавливаются микропроцессорные контроллеры. Контролируемыми пунктами нефтепромысла являются ДНС, ГЗУ(«Спутник»), скважина. Интерфейс пункта управления (ПУ) поддерживает обмен данными по 10 направлениям. Каждое направление может работать по одной физической паре кабельной линии связи (КЛС) или по радиоканалу. К каждой паре КЛС или радиомодему на контролируемом объекте может быть подключено до 27 контроллеров «Атлас». Информация с датчиков, установленных на контролируемых объектах собирается по кабельным линиям на микропроцессорном контроллере и далее через интерфейс связи поступает на компьютер пункта управления – диспетчерского пульта управления. Внедрение системы «Атлас» позволяет: повысить качество и достоверность замеров дебита по гибкой, индивидуальной для каждой скважины программе; собирать и обрабатывать данные о текущих значениях различных параметров, измеряемых приборами; обеспечить надежный дистанционный контроль за соответствием технологических параметров заданным значениям; успешно решать вопросы дистанционного управления оборудованием; подключить ПУ к компьютерной сети для дальнейшей передачи собранной информации и использования ее при принятии управленческих решений.

Контролируемые параметры по объектам:

Скважина : давление в выкидной линии (ВЭ-16рб); динамограммы (динамограф); обрыв штанг, обрыв ремня, перегрузка насоса (станция управления).

ГЗУ : дебит по жидкости, (СКЖ, ТОР1-50, регулятор расхода); давление в выкидном коллекторе (ВЭ-16рб, Мид, Корунд, КРП); управление переключением скважины, № скважины, находящейся на замере (блок управления гидропривода ГП-1, Атлас).

ДНС : дебит по жидкости (Норд, Миг, Турбо-Квант); давление в выкидном коллекторе (ВЭ-16рб, Мид, Корунд, КРП); информация – вработе или нет (Атлас); предельный верхний, нижний уровень в накопительной емкости (датчик уровня ДУЖ-1М с блоком автоматики БА-1).

БАС : верхний предельный уровень (датчик уровня ДУЖ-1М с блоком автоматики БА-1); регулирование уровня жидкости (РУПШ).

КСУ : уровень (ВК-1200, У-1500, датчик уровня ДУЖ-1М с блоком автоматики БА-1).

РВС : уровень раздела фаз, верхний предельный уровень (ВК-1200, У1500, датчик уровня ДУЖ-1М с блоком автоматики БА-1).

Отстойники : верхний предельный уровень (датчик уровня ДУЖ-1М с блоком автоматики БА-1).

Печь ПТБ-10 : температура нефти (ТСП, ТСМ - датчики, УКТ-38, А100, ИПШ-703 – вторичные блоки); температура дымовых газов (ТХК, ТХА - термопары, УКТ-38, А100, ИПШ-705 – вторичные блоки); расход нефти (Норд, Турбо-Квант, РП-160); давление нефти в выкидном коллекторе (ВЭ-16рб).

ЭДГ-электродегидратор : предельный верхний уровень среды (СУС).

Насосные агрегаты : давление на приеме и выкиде насоса (ВЭ-16рб, Мид, Корунд, КРП); температура подшипников (ТСМ – датчики, УКТ-38 – вторичный блок).

Узлы учета нефти : расход (Норд, Миг, Турбо-Квант); накопительная проба на % воды (автоматический пробоотборник – Проба 1М); расход через пробозаборное устройство (ТОР1-50).


Введение

1. Гидравлический разрыв пласта как средство поддержания продуктивности скважин

2. Сущность метода гидравлического разрыва пласта

2.1 Проведение ГРП

2.2 Средства проведения ГРП

3 Технология и техника проведения ГРП

4 Выбор технологии ГРП

5 Оборудование, используемое при ГРП

6 Пример расчёта гидравлического разрыва пласта

Заключение

Список использованной литературы


ВВЕДЕНИЕ

Извлечение нефти из пласта и любое воздействие на него осуществляется через скважины. Призабойная зона скважины (ПЗС) – область, в которой все процессы протекают наиболее интенсивно. Здесь как в единый узел сходятся линии токов при извлечении жидкости или расходятся – при закачке. От состояния призабойной зоны пласта существенно зависят эффективность разработки месторождения, дебиты добывающих, приёмистость нагнетательных и та доля пластовой энергии, которая может быть использована на подъём жидкости непосредственно в скважине.

Механические методы воздействия эффективны в твёрдых породах, когда создание дополнительных трещин в ПЗС позволяет приобщить к процессу фильтрации новые удалённые части пласта.

Одним из наиболее распространенных методов интенсификации добычи нефти или газоотдачи является гидравлический разрыв пласта (ГРП).

Его используют для создания новых трещин как искусственных, так и для расширения старых (естественных), с целью улучшения сообщаемости со стволом скважины и увеличению системы трещин или каналов для облегчения притока и снижения энергетических потерь в этой ограниченной области пласта.

Гидравлический разрыв пласта проводится при давлениях, доходящих до 100 МПа, с большим расходом жидкости и при использовании сложной и многообразной технике.


1. ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА КАК СРЕДСТВО ПОДДЕРЖАНИЯ ПРОДУКТИВНОСТИ СКВАЖИН

Сущность метода гидравлического разрыва пласта заключается в том, что на забое скважины путем закачки вязкой жидкости создаются высокие давления, превышающие в 1,5-2 раза пластовое давление, в результате чего пласт расслаивается и в нем образуются трещины.

Промысловая практика показывает, что производительность скважин после гидравлического разрыва увеличивается иногда в несколько десятков раз. Это свидетельствует о том, что образовавшиеся трещины соединяются с существовавшими ранее, и приток жидкости к скважине происходит из удаленных изолированных от скважины до разрыва пласта высокопродуктивных зон. О раскрытии естественных или образовании искусственных трещин в пласте судят по графикам изменения расхода Q и давления P при осуществлении процесса. Образование искусственных трещин на графике характеризуется падением давления при постоянном темпе закачки, а при раскрытии естественных трещин расход жидкости разрыва растет непропорционально росту давления.

Гидравлический разрыв пласта осуществляется для поддержания продуктивности скважин так, как показала практика проведение ГРП выгоднее, чем строительство новой скважины как с экономической стороны так и с точки зрения разработки. Но проведение гидравлического разрыва требует очень тщательного изучения термодинамических условий и состояния призабойной зоны скважины, состава пород и жидкостей, а так же систематического изучения накопленного промыслового опыта на данном месторождении. Осуществление гидравлического разрыва пласта рекомендуется в следующих скважинах:

1. Давших при опробовании слабый приток

2. С высоким пластовым давлением, но с низкой проницаемостью коллектора

3. С загрязненной призабойной зоной

4. С заниженной продуктивностью

5. С высоким газовым фактором(по сравнению с окружающими)

6. Нагнетательных с низкой приёмистостью

7. Нагнетательных для расширения интервала поглощения

Целью проведения гидравлического разрыва является увеличение продуктивности скважин, с воздействием на призабойную зону скважины – изменение свойств пористой среды и жидкости (свойства пористой среды изменяются при гидроразрыве за счет образования системы трещин).

Допустим, что успех или неуспех гидроразрыва мы связываем с двумя факторами: предшествующим дебитом скважины и толщиной пласта. В действительности эффективность гидроразрыва зависит, конечно, не от двух, а от многих факторов: давления нагнетаемой жидкости, темпа закачки, процента песка в этой жидкости и т.д.


2. СУЩНОСТЬ МЕТОДА ГРП

Гидравлический разрыв пласта проводится следующим образом: в проницаемый пласт закачивается жидкость при давлении до 100 МПа, под действием которого пласт расщепляется, либо по плоскостям напластования, либо вдоль естественных трещин. Для предупреждения смыкания трещин при снятии давления в них вместе с жидкостью закачивается крупный песок, сохраняющий проницаемость этих трещин, в тысячу раз превышающую проницаемость ненарушенного пласта.

Для предупреждения смыкания образовавшихся в пласте трещин и сохранения их в раскрытом состоянии после снижения давления ниже давления разрыва в образовавшиеся трещины нагнетают вместе с жидкостью отсортированный крупнозернистый кварцевый песок. Подача песка обязательна как во вновь созданные, так и в существовавшие в пласте трещины, раскрытые при гидроразрыве. Как показывают исследования, в процессе гидравлического разрыва возникают трещины шириной 1-2 мм. Радиус их может достигать нескольких десятков метров. Заполненные крупнозернистым песком трещины обладают значительной проницаемостью, в результате чего после гидроразрыва производительность скважины увеличивается в несколько раз.

Гидравлический разрыв пласта (ГРП) проводят для образования новых или раскрытия уже существующих трещин с целью повышения проницаемости призабойной зоны пласта и увеличения производительности скважины.

Гидравлический разрыв пласта получают в результате закачки жидкости в пласт под высоким давлением. Для предотвращения смыкания после окончания операции и снижения давления до первоначального в них вместе с жидкостью закачивают пористый материал - кварцевый песок, корунд.

Одним из важнейших параметров проведения ГРП является давление гидроразрыва, при котором образуются трещины в породы. В идеальных условиях давление раскрытия рр должно быть меньше горного давления рг, создаваемого толщей вышележащих пород. Однако в реальных условиях может выполняться неравенство рг * рп < рр, что объясняется наличием в пласте глинистых пропластков, обладающих пластичными свойствами. В процессе бурения, когда цикл скважины не обсажен, под действием веса вышележащих пород может произойти выдавливание глины из пласта в скважины и частичное разгружение пласта, расположенного под глинистыми пропластками, что и приводит к снижению давления гидроразрыва.

Таким образом, давление разрыва зависит от предшествующего эксплуатации скважин процесса бурения. Поэтому рассчитать давление разрыва нельзя. Однако при сходных технологиях проводки скважин на данной площади можно говорить о среднем давлении разрыва, определяя его по данным гидроразрыва на соседних скважинах.

2.1 Проведение гидроразрыва

Гидроразрыв проводят по следующей технологии. Вначале под большим давлением закачивают жидкость разрыва. После разрыва пласта для закрепления трещин закачивают жидкость с песком. Обычно и жидкость разрыва, и жидкость-песконоситель при обработке добывающих скважин приготавливают на углеводородной основе, при обработке нагревательных скважин - на водной. Как правило, для этих целей используют различные эмульсии, а также углеводородные жидкости и водные растворы. Концентрация песка в жидкости-песконосителе обычно колеблется в пределах от 100 до 500 кг/м3 и зависит от ее фильтруемости и удерживающей способности.

Механизм гидравлического разрыва пласта, т. е. механизм образования в нем трещин, может быть представлен следующим образом. Все породы, слагающие тот или иной пласт, имеют естественные микротрещины, которые находятся в сжатом состоянии под влиянием веса вышележащей толщи пород или, как это принято называть, горного давления. Проницаемость таких трещин небольшая. Все породы обладают некоторой прочностью. Поэтому для образования в пласте новых трещин и расширения существующих необходимо снять в породах пласта напряжения, создаваемые горным давлением, и преодолеть прочность пород на разрыв.

Давление разрыва даже в пределах одного пласта непостоянно и может изменяться в широких пределах. Практикой подтверждено, что в большинстве случаев давление разрыва Pp на забое скважины ниже горного давления и составляет (15...25) * Н, кПа (1,5…2,5 кгс/см2).

Здесь Н - глубина скважины в м.

Для малопроницаемых пород это давление может быть достигнуто при закачке маловязких жидкостей разрыва с ограниченными скоростями закачки. Если породы высокопроницаемые, требуется большая скорость нагнетания, а при ограниченной скорости нагнетания необходимо использовать жидкости повышенной вязкости. Наконец, для достижения давления разрыва в случае особо высокой проницаемости пород пласта следует применять еще большие скорости закачки высоковязких жидкостей. Процесс гидравлического разрыва пласта состоит из следующих последовательно проводимых операций: 1) закачка в пласт жидкости разрыва для образования трещин; 2) закачка жидкости-песконосителя с песком, предназначенным для закрепления трещин; 3) закачка продавочной жидкости для продавливания песка в трещины.

2.2 Средства проведения ГРП

Обычно в качестве жидкости разрыва и жидкости-песконосителя применяют одну и ту же жидкость, поэтому их объединяют под одним названием - жидкость разрыва. Для гидравлического разрыва пласта применяют различные рабочие жидкости, которые по физико-химическим свойствам можно разделить на две группы: жидкости на углеводородной основе и жидкости на водной основе.

В качестве углеводородных жидкостей применяют нефть повышенной вязкости, мазут, дизельное топливо или керосин, загущенные нафтеновыми мылами.

К растворам, применяемым в нагнетательных скважинах, относятся: водный раствор сульфит спиртовой барды, растворы соляной кислоты, вода, загущенная различными реагентами, а также загущенные растворы соляной кислоты.

Процесс разрыва в большой степени зависит от физических свойств жидкости разрыва и, в частности, от вязкости, фильтруемости и способности удерживать зерна песка во взвешенном состоянии.

К жидкости разрыва предъявляются следующие требования. Во-первых, она должна быть высоковязкой, чтобы не произошло ее быстрое проникновение в глубь пласта, иначе повышение давления вблизи скважины будет недостаточным. Во-вторых, при наличии в разрезе скважины нескольких продуктивных пропластков необходимо обеспечить по возможности равномерный профиль приемистости. Для этого ньютоновские жидкости не подходят, так как количество поступающей жидкости в каждый пропласток будет пропорционально его проницаемости. Поэтому лучше будут обрабатываться высокопроницаемые пропластки и, следовательно, эффект от проведения гидроразрыва будет снижен. Для гидроразрыва необходимо использовать жидкость, вязкость которой зависит от скорости фильтрации. Если с увеличением скорости фильтрации вязкость возрастает, то при движении в высокопроницаемом пропластке вязкость жидкости будет выше, чем в низкопроницаемом. В результате профиль приемистости становится более равномерным. Подобной фильтрационной характеристикой и обладают вязкоупругие жидкости, закон фильтрации для которой может быть записан в виде.


V=(kDp)/(mk L),………………………………………….................(1)

где mk - кажущаяся вязкость, определяемая по формуле

mk/mo = 1 + A Dp/L,…………………………………………….(2)

mo - предельная кажущаяся вязкость жидкости при v ® 0; A - константа, зависящая от вязкоупругих свойств жидкости (при A=0 получаем закон Дарси).

2.3 Необходимые параметры для проведения ГРП

При закачке жидкости в два слоя с проницаемостями k1 и k2 отношение подвижностей при одинаковых градиентах давления равно

(k/mk)1: (k/mk)2 = k1 /k2 * (1+A (Dp/L)*)/1+A(Dp/L)*),…….(3)

Пусть, например, A(Dp/L)*) =2

Тогда при k1 /k2 =25 A (Dp/L)*=0,4

И отношение подвижностей равно примерно 11,7 вместо 25.

Для гидроразрыва в скважину спускают трубы, по которым Жидкость поступает в пласт. Для предохранения обсадной колонны от больших давлений над разрываемым пластом устанавливают пакер, а для повышения герметичности над ним - гидравлический якорь. Под действием давления поршни якоря раздвигаются и прижимаются к обсадной колонне, предотвращая сдвиг пакера.

При очень низкой вязкости жидкости разрыва для достижения давления разрыва требуется закачка в пласт большого объема жидкости, что связано с необходимостью использовать несколько одновременно работающих насосных агрегатов.

При высокой вязкости жидкости разрыва для образования трещин необходимы высокие давления. В зависимости от проницаемости пород оптимальная вязкость жидкости разрыва колеблется в пределах 50-500 сП. Иногда при закачке через обсадную колонну используют жидкость с вязкостью до 1000 сП и даже до 2000 сП.

Жидкость разрыва должна быть слабофильтрующейся и обладать высокой удерживающей способностью в отношении взвешенного в ней песка, что предупреждает возможность оседания его в цилиндрах насоса, элементах обвязки, трубах и на забое скважины.

При этом достигаются сохранение постоянной концентрации песка в жидкости разрыва и хорошие условия для переноса его в глубь трещины. Фильтруемость проверяют на приборе по определению водоотдачи глинистого раствора. Низкой считается фильтруемость менее 10 см3 жидкости за 30 мин.

Способность жидкости разрыва удерживать песок во взвешенном состоянии находится в прямой зависимости от вязкости.

Более вязкие жидкости, как, например, мазуты, имеют удовлетворительную вязкость при температуре ниже 20°С; сырые нефти и вода, имеют низкую вязкость, в большинстве случаев хорошо фильтруются, и их не рекомендуется в чистом виде использовать при гидроразрыве пласта.

Повышение вязкости, как и уменьшение фильтруемости жидкостей, применяемых при гидроразрыве пластов, достигается введением в них соответствующих загустителей. Такими загустителями для углеводородных жидкостей являются соли органических кислот, высокомолекулярные и коллоидные соединения нефтей (например, нефтяной гудрон) и другие отходы нефтепереработки.

Значительной вязкостью и высокой песконесущей способностью обладают некоторые нефти, керосино-кислотные, нефтекислотные, а также водо-нефтяные эмульсии. Эти жидкости используют в качестве жидкости разрыва и жидкости-песконосителя при разрыве пластов в нефтяных скважинах.

В нагнетательных скважинах при гидравлическом разрыве используют загущенную воду. Для загущения применяют сульфит-спиртовую барду (ССБ) и другие производные целлюлозы, хорошо растворимые в воде и имеющие низкую фильтруемость.

В зависимости от концентрации сухих веществ ССБ бывает двух видов - жидкая и твердая. Вязкость исходного жидкого концентрата 1500-1800 сП. Добавка воды к растворам ССБ ведет к быстрому понижению вязкости и способствует хорошему вымыванию ССБ водой из пористого пространства и восстановлению приемистости. Раствор ССБ обладает хорошей удерживающей способностью и низкой фильтруемостью. Для разрыва в основном применяется раствор ССБ вязкостью 250-800 сП.

В последнее время в качестве жидкости-песконосителя применяют загущенную ССБ концентрированную соляную кислоту (40% НСl и 60% ССБ). Применение такой жидкости разрыва позволяет сочетать процесс гидроразрыва с химическим воздействием на призабойную зону. В смеси с ССБ соляная кислота медленно реагирует с карбонатами (2-2,5 ч против 30-40 мин при использовании чистого раствора НСl). Это дает возможность по трещинам, образовавшимся при гидроразрыве, продавить глубоко в пласт химически активную соляную кислоту и обработать призабойную зону пласта на большом удалении от ствола скважины.

При гидроразрыве пласта в условиях высоких пластовых температур (130-150°С) вязкость 20- и 24%-ных растворов ССБ с повышением температуры до 90° С резко понижается до 8-0,6 сП.

При более высоких температурах вязкость этих растворов приближается к вязкостным свойствам воды. Поэтому в качестве эффективной жидкости разрыва и песконосителя, обладающей хорошей пескоудерживающей способностью и слабой фильтруемостью, применяют водные растворы КМЦ-500 (карбоксиметилцеллюлоза) в пределах 1,5-2,5% с добавкой иногда хлористого натрия до 20-25%. Продавочная жидкость при всех условиях должна иметь минимальную вязкость в целях снижения потерь напора при прокачке.

Цель заполнения песком трещин - предупреждение их смыкания и сохранение в открытом состоянии после снятия давления ниже величины давления разрыва. Поэтому к песку предъявляются следующие требования:

1) песок должен иметь достаточную механическую прочность, чтобы не разрушаться в трещинах под действием веса породы;

2) сохранять высокую проницаемость.

Этим требованиям удовлетворяет хорошо скатанный однородный кварцевый песок.

Применяется песок следующих фракций: 0,25-0,4 мм; 0,4-0,63; 0,63-0,79; 0,79-1,0; 1,0-1,6ММ. Наиболее приемлемой фракцией для гидроразрыва пласта являются пески с размером зерен от 0,5 до 1,0 мм.

Степень эффективности гидравлического разрыва пласта определяется диаметром и протяженностью созданных трещин и, следовательно, повышенной проницаемостью. Чем больше диаметр и протяженность трещин, тем выше эффективность обработки. Создание трещин большой протяженности достигается закачкой больших количеств песка. Практически в скважину закачивают от 4 до 20 тОНН песка.Концентрация песка в жидкости-песконосителе зависит от фильтруемости и удерживающей способности жидкости и колеблется от 100 до 600 кг на 1 м3 жидкости.


3.ТЕХНОЛОГИЯ И ТЕХНИКА ПРОВЕДЕНИЯ ГРП

Гидравлический разрыв проводят в пластах с различной проницаемостью в случае падения дебита или приемистости нагнетательных скважин.

До проведения гидроразрыва скважину испытывают на приток, определяют ее поглотительную способность и давление при поглощении. С этой целью одним агрегатом закачивают нефть до получения на устье некоторого избыточного давления, при котором скважина начинает принимать жидкость. В течение 10-20 мин замеряют расход при постоянном давлении нагнетания. После подключения второго агрегата и увеличения количества закачиваемой жидкости поднимают давление на 2-3 МПа и вновь определяют расход.

Процесс увеличения расхода жидкости и давления повторяют несколько раз, и в конце исследования создают максимально возможное давление, при котором вновь замеряют расход. По полученным данным строят кривую зависимости приемистости скважины от давления нагнетания. По данным о поглотительной способности скважины до и после разрыва определяют количество жидкости и давление, необходимые для проведения разрыва, а также судят о качестве проведенного разрыва и об изменениях проницаемости пластов призабойной зоны после разрыва. За давление разрыва пласта условно принимают давление, при котором коэффициент приемистости скважины увеличивается в 3-4 раза по сравнению с начальным.

Забой скважины очищают от грязи способом дренирования и затем промывают. В отдельных случаях для увеличения фильтрационных свойств пластов рекомендуется предварительно обработать скважину соляной или грязевой кислотой и провести дополнительную перфорацию. Осуществление этих мероприятий способствует снижению давления разрыва и повышению его эффективности.

После промывки, очистки и проверки специальным шаблоном в скважину спускают насосно-компрессорные трубы диаметром 75 или 100 мм, по которым прокачивается жидкость разрыва. Для предохранения обсадной колонны от воздействия большого давления над разрываемым пластом устанавливают пакер, который разобщает фильтровую зону пласта от ее вышележащей части. Благодаря этому давление, создаваемое насосами, передается только на фильтровую зону и на нижнюю поверхность пакера.

Применяют различные конструкции пакеров. Наиболее распространены шлипсовые пакеры, выпускаемые под различные диаметры эксплуатационных колонн и рассчитанные на давление 50 МПа (рис.1).

Герметизация обсадной колонны осуществляется при деформации резиновых уплотнительных манжет от веса колонны насосно-компрессорных труб при опоре конуса на шлипсы пакера, центрирование которого осуществляется фонарем. Замковое устройство фонаря раскрывается при трении фонаря о стенки обсадных труб во время вращения пакера.

Осевая нагрузка при гидроразрыве воспринимается головкой пакера с опорным кольцом и передается на якорь, удерживающий пакер и колонну насосно-компрессорных труб от перемещения вверх. Головка пакера имеет левую резьбу в месте соединения с якорем.

В случае заклинивания манжет в обсадной колонне якорь может быть отвинчен от пакера правым вращением и поднят на поверхность.

Конструкция плашечного гидравлического действия приведена на рис.2

В процессе закачки рабочей жидкости для гидроразрыва создающийся перепад давления между внутренней частью якоря и кольцевым зазором в эксплуатационной колонне деформирует резиновую трубку, выдвигая плашки до упора в стенку колонны. Плашки, врезаясь своими острыми зубцами в стенки труб, удерживают якорь и соответственно пакер от выталкивания вверх по скважине.

Наряду со шлипсовыми пакерами применяют пакеры самоуплотняющиеся ПС. В этой конструкции герметизация достигается за счет самоуплотнения резиновых манжет под воздействием жидкости гидроразрыва.

В отличие от других типов пакеров в конструкции пакера ПС предусмотрен перепускной клапан, предназначенный для перепуска жидкости гидроразрыва в затрубное пространство во время спуска пакера, за счет чего снимается давление на самоуплотняющиеся манжеты. Перепускной клапан присоединяется через переводник и устанавливается выше гидравлического якоря.

После спуска труб с пакером и якорем устье скважины оборудуют специальной головкой, к которой подключают агрегаты для нагнетания в скважину жидкости разрыва.

3.1 Обвязка и оборудование при ГРП

На рис.2 приведена общая схема обвязки и расположения оборудования при гидравлическом разрыве пласта. На первом этапе закачивают жидкость разрыва насосными агрегатами, в результате чего давление постепенно увеличивается и по достижении определенного значения происходит разрыв пласта. О моменте разрыва судят по манометру на выкидной линии. Этот момент характерен резким спадом давления и увеличенным расходом нагнетаемой жидкости.

После разрыва пласта переходят ко второму этапу - подаче в трещину жидкости-песконосителя с песком при большом расходе и высоком давлении нагнетания. Жидкость-песконоситель с песком задавливают в трещину продавочной жидкостью при максимальном давлении и с максимальной скоростью закачки. Достигается это путем подключения наибольшего числа агрегатов. В качестве продавочной жидкости для нефтяных скважин используют нефть и для нагнетательных - воду. Количество этой жидкости должно быть равно емкости колонны труб. Закачка продавочной жидкости является последним, третьим этапом непрерывного процесса гидроразрыва пласта.

После продавки устье закрывают и скважину оставляют в покое до тех пор, пока устьевое давление не упадет до нуля. Затем скважину промывают, очищают от песка и приступают к освоению.

Представляет интерес техника проведения гидроразрыва в скважинах, продуктивные горизонты которых залегают на глубинах 2800-3400м. Технология разрыва пласта в таких скважинах отличается от обычной тем, что процесс гидроразрыва проходит при постоянном противодавлении на на-сосно-компрессорные трубы и на верхний торец резинового элемента пакера. Величина противодавления определяется как разность между расчетным значением давления гидроразрыва и максимально допустимым давлением на пакер. Для таких скважин рабочее давление в кольцевом пространстве (затрубном) определяют опытным путем. Для подкачки жидкости разрыва используют вспомогательный агрегат. Особенности расположения оборудования и обвязки устья при гидроразрыве по данной технологии показан на рис.3

Работы по гидроразрыву на скважине рекомендуется осуществлять в следующей последовательности. Опрессовывают наземное оборудование на давление, равное 70 МПа, и заменяют в скважине воду на нефть, после чего спускают пакер. Затем с помощью насосных агрегатов, применяемых для гидроразрыва пласта, прокачкой жидкости в насосно-компрессорных трубах и под пакером создают максимально возможное давление. Подкачкой жидкости вспомогательным цементировочным агрегатом поднимают давление в кольцевом пространстве (затрубном) и оставляют скважину в покое на 30 мин. Этим на первом этапе достигается возможность образования трещин в пласте.

На втором этапе проводят операцию по закреплению трещин песком. После испытания скважины на приемистость в пласт закачивают жидкость-песконоситель.

Рис. 3. Схема обвязки оборудования при ГРП в глубоких скважинах:

1 - пескосмеситель; 2 - агрегат ЦА-400; 3- агрегат ЧАН-700;

4 - вспомогательный агрегат; 5 - емкость для рабочих жидкостей

Давление на устье во время закачки и продавливания в пласт может увеличиваться до 60-80 МПа. Проведение гидроразрыва по данной технологии позволяет значительно повысить производительность скважины.

При наличии в скважинах большой фильтровой зоны или несколько вскрытых продуктивных пропластков производят поинтервальные многократные гидравлические разрывы.

В последнее время разработан и внедрен новый способ поинтервального гидроразрыва, позволяющий за один спуск забойного оборудования проводить в любой последовательности гидроразрыв тех или иных пластов. При осуществлении гидроразрыва по этой технологии в одном пласте перфорированные отверстия против вышележащих пластов перекрываются тонущими, а против нижележащих пластов - плавающими в жидкости разрыва эластичными шариками. Применяемое забойное оборудование отличается простотой конструкции и может быть изготовлено в промысловых мастерских. Состоит оно из двух полых цилиндров, соосно-закрепленных на насосно-компрессорных трубах. Цилиндр с отверстиями в дне открыт сверху, а цилиндр с отверстиями в крышке - снизу. Труба, на которую надеты и приварены цилиндры, заглушена снизу и имеет отверстия над нижним цилиндром.

Подготовительные работы по поинтервальному гидроразрыву производят в следующей последовательности. В скважину на насосно-компрессорных трубах спускают цилиндры, пакер и якорь. Под нижний цилиндр помещают специальные эластичные шарики диаметром 18-20 мм с удельным весом меньшим, чем у жидкостей, применяемых при гидроразрыве (плавающие шарики); следовательно, в жидкости они все время будут прижиматься к крышке нижнего цилиндра. Диаметр цилиндра подбирают таким образом, чтобы шарики не могли попасть в зазор между ним и эксплуатационной колонной. Число шариков, загружаемых в нижний цилиндр, берется несколько больше, чем число перфорационных отверстий, находящихся ниже самого верхнего интервала, намеченного для гидроразрыва.

В верхний цилиндр помещают тонущие шарики. При этом количество их также должно быть больше, чем число отверстий, находящихся выше нижнего интервала, намеченного для гидроразрыва. Чтобы шарики при спуске вниз или при негерметичном перекрытии колонны не попадали под пакер, ставят специальный диск-отбойник. Пакер устанавливается с таким расчетом, чтобы интервал, намеченный для гидроразрыва, находился между цилиндрами с шариками. После этого производят гидроразрыв намеченного пласта обычным способом. Если при разрыве начнут принимать жидкость выше или нижележащие пласты, то их перфорационные отверстия перекрываются шариками, которые потоком жидкости увлекаются из цилиндров к этим отверстиям. Таким образом, гидроразрыв произойдет только в намеченном интервале.После прекращения закачки шарики благодаря соответствующей разнице в их удельных весах соберутся в свои цилиндры. Приподнимая или опуская оборудование и устанавливая цилиндры с шариками в нужном интервале, можно произвести гидроразрыв любого пласта.


4. ВЫБОР ТЕХНОЛОГИИ ГРП

Технология гидроразрыва пласта осуществляется следующим образом. Поскольку при ГРП в большинстве случаев (за исключением мелких скважин) возникают давления, превышающие допустимые для обсадных колонн, то предварительно в скважину спускают НКТ, Способные выдержать это давление. Выше кровля пласта или пропластка, в котором намечается произвести разрыв, устанавливают пакер, изолирующий кольцевое пространство и колонну от давления, и устройство, предупреждающее его смещение и называемое якорем. По спущенным НКТ нагнетается сначала жидкость разрыва в таких объемах, чтобы получить на забое давление, достаточное для разрыва пласта. Момент разрыва на поверхности отмечается как резкое увеличение расхода жидкости (поглотительной способности скважины) при том же давлении на устье скважины или как резкое уменьшение давления на устье при том же расходе. Давление горных пород равно:

Рг = rПgН (4)

Силы сцепления частиц породы равно:

Рр = Рг + sZ (5)

более объективным показателем, характеризующим момент ГРП, является коэффициент поглотительной способности

kп = Q/(pз – рп) (6)

где Q-расход нагнетаемой жидкости;

рп-пластовое давление в районе данной скважины;

рз-давление на забое скважины в процессе ГРП.

При ГРП происходит резкое увеличение kп. Однако вследствие трудностей, связанных с непрерывным контролем за величиной рз, а также вследствие того, что распределение давлений в пласте - процесс существенно неустановившийся, о моменте ГРП судят по условному коэффициенту k.

где ру-давление на устье скважины.

Резкое увеличение k в процессе закачки также интерпретируется как момент ГРП. Имеются приборы для снятия этой величины.

После разрыва пласта в скважину закачивают жидкость-песконоситель при давлениях, удерживающих образовавшиеся в пласте трещины в раскрытом состоянии. Это более вязкая жидкость, смешанная (180-350 кг песка на 1 м3 жидкости) с песком или другим наполнителем. В раскрытые трещины вводится песок: на возможно большую глубину для предотвращения смыкания трещин при последующем снятии давления и переводе скважины в эксплуатацию. Жидкости-песконосители проталкивают в НКТ ив пласт продавочной жидкостью, в качестве которой используется любая маловязкая недефицитная жидкость.

Для проектирования процесса ГРП очень важно определить давление разрыва рр, которое необходимо создать на забое скважины.

Накоплен большой статистический материал по величине давления разрыва пласта рр по различным месторождениям мира и при различных глубинах скважин, который говорит об отсутствии четкой связи между глубиной залегания пласта и давлением разрыва. Однако все фактические значения рр лежат в пределах между величинами полного горного и гидростатического давлений. Причем при малых глубинах (менее 1000 м) рр ближе к горному давлению и при больших глубинах - к гидростатическому.

для неглубоких скважин (до 1000 м)

рр = (1,74 - 2,57) рст,………………………………………………(8)

для глубоких скважин (Н > 1000м)

рр =(1,32 - 1,97) рст,……………………………………………….(9)

где рст - гидростатическое давление столба жидкости, высота которого равна глубине залегания пласта.

Сопротивление горных пород на разрыв обычно мало и лежит в пределах sр=1,5 … 3 МПа, поэтому оно не влияет существенно на рр.

Давление разрыва на забое рр и давление на устье скважины ру связаны очевидным соотношением

рр = ру + рст – ртр,………………………………………………………………………........(10)

где ртр – потери давления на трении в НКТ.

Из уравнения (10) следует:

ру = рр + ртр - рст,…………………………………………….....(11)

рст - статическое давление, определяется с учетом кривизны скважины

рст = rж g Н cos b,………………………………………………(12)

где H - глубина скважины; b - угол кривизны (усредненный);

rж - плотность жидкости в скважине, причем если жидкость содержит наполнитель (песок, стеклянные шарики, порошок из полимеров и др.), то плотность подсчитывается как средневзвешенная

r=rж(1–n/rн)+n,…………………………………………………(13)

где n - число килограммов наполнителя в 1м3 жидкости;

рн-плотность наполнителя (для песка рн=2650 кг/м3).

Потери на трение определить труднее, так как применяемые жидкости иногда обладают неньютоновскими свойствами. Присутствие в жидкости наполнителя (песка) увеличивает потери на трение.

В американской практике используются различные графики зависимости потерь давления на трение на каждые 100 футов НКТ разного диаметра при прокачке различных жидкостей с заданным объемным расХОдом. При больших темпах закачки, соответствующих турбулентному течению, структурные свойства используемых жидкостей (с различными загустителями и химическими реагентами) обычно исчезают, и достаточно приближенно потери на трение для этих жидкостей можно определить по обычным формулам трубной гидравлики.

ртр = l(Н/d) * (w2/2g) * rga,…………………………………………....(14)

где l - коэффициент трения, определяемый по соответствующим формулам в зависимости от числа Рейнольдса;

w - линейная скорость потока в НКТ;

d – внутренний диаметр НКТ; r - плотность жидкости, Н – длина НКТ;


g = 9,81 м/с2; a - поправочный коэффициент, учитывающий наличие в жидкости наполнителя (для чистой воды a = 1) и зависящий от его концентрации.


5. ОБОРУДОВАНИЕ, ИСПОЛЬЗУЕМОЕ ПРИ ГРП

При гидроразрыве пласта используют целый комплекс наземного оборудования: насосные агрегаты типа 2АН-500 или 4АН-700, пескосмесительный агрегат 4ПА. Для перевозки жидкости разрыва применяют автоцистерны 4ЦР или ЦР-20.

Агрегат 4АН-700 конструкции Азинмаша является основным в комплекте наземного оборудования. Он отличается повышенными мощностью и производительностью, удобен в эксплуатации. Рабочее давление агрегата позволяет проводить гидроразрыв пластов и осуществлять гидропескоструйные процессы и в глубоких скважинах. Все узлы его смонтированы на грузовом трехосном автомобиле КрАЗ-257 грузоподъемной силой 100-120 кН и представляют из себя следующее: силовую установку; коробку передач; трехплунжерный насос; манифольд, систему управления.

На раме автомобиля, непосредственно за кабиной водителя, расположена силовая установка агрегата, состоящая из двигателя с многодисковой фрикционной муфтой и центробежным вентилятором, систем питания, смазки и охлаждения, установки воздухоочистителя и других вспомогательных узлов.

Двигатель агрегата-дизельмотор двенадцатицилиндровый, четырехтактный имеет мощность 588 кВт при частоте вращения коленчатого вала 2000 об/мин. Двигатель с помощью многодисковой фрикционной муфты соединен с приемным валом коробки передач.

Насос 4Р-700 трехплунжерный, горизонтальный одинарного действия. Плунжеры предусмотрены размерами 100 и 120 мм, что обеспечивает работу насоса соответственно при давлениях до 70 и 50 МПа. Производительность агрегата при давлении 70 МПа составляет 6,3 л/с и при 20 МПа - 22 л/с. Масса агрегата 20200 кг, габаритные размеры 9800 х 2900 x 3320 мм. Управление агрегатом производится с центрального пульта, расположенного в кабине автомобиля, где размещены педали управления топливным насосом и фрикционной муфтой двигателя, рукоятка управления коробкой передач и необходимая контрольно-измерительная аппаратура.

Для транспортировки песка нужных фракций к скважине, в которой намечено произвести гидроразрыв пласта, и для последующего механического приготовления песчано-жидкостной смеси применяют специальные пескосмесительные агрегаты типа 4ПА.

На самоходном шасси автомашины КрАЗ-257 смонтированы бункер 1 для сыпучего материала с загрузочным шнеком 2 и рабочим шнеком 3, камера гидравлического смещения 5, смеситель 7 с поплавковым регулятором уровня 6, а также приемный коллектор 11 и раздаточный коллектор 10 с насосом 9 для перекачки песка. В верхней разгрузочной части шнека 3 установлена поворотная заслонка 4, соединенная с поплавковым регулятором 6. К стенкам и днищу бункера 1 прикреплены пневмовибраторы, обеспечивающие надежное поступление сыпучего материала самотеком в приемник шнека 3.

Загрузочный и рабочий шнеки, а также лопастная мешалка приводятся в действие гидродвигателями при помощи масляного насоса 8. Все агрегаты установки управляются с пульта, размещенного в кабине автомобиля.

Песчано-жидкостная смесь с небольшой концентрацией песка приготавливается следующим образом. Жидкость через приемный коллектор 11 попадает в камеру гидравлического смещения 5, в которую из бункера 1 шнеком 3 подается сыпучий материал. Количество сыпучего материала регулируется частотой вращения рабочего шнека и заслонкой 4 при помощи поплавкового регулятора уровня 6 в зависимости от уровня смеси в смесителе 7. Избыточное количество сыпучего материала по отводящему патрубку поступает обратно в бункер. В камере гидравлического смешения 5 приготавливается раствор требуемой концентрации, который поступает в смеситель 7, где при помощи лопастной мешалки поддерживается равномерность концентрации песка. Из смесителя 7 раствор подается Песковым насосом 9 через раздаточный коллектор 10 к месту потребления.

При приготовлении песчано-жидкостной смеси с большой концентрацией сыпучего материала камера гидравлического смешения заменяется проходной трубой, а жидкость из коллектора 11 и сыпучий материал из бункера 1 поступают непосредственно в смеситель 7, через сменную трубу (указана пунктиром). Готовая смесь отбирается так же, как и в первом случае.

Рис. 4. Схема пескосмесительного агрегата

Емкость бункера 6,5 м3. Максимальная производительность рабочего шнека (по песку) 50 т/ч, максимальная грузоподъемная сила 90 кН, производительность загрузочного шнека 12-15 т/ч. Масса агрегата с грузом 23 000 кг, габаритные размеры 8700 х 2625 х 3600 мм. Пескосмесительный агрегат обслуживается одним шофером-мотористом. При проведении гидроразрыва пласта пескосмесительный агрегат с помощью гибких шлангов соединяется с автоцистернами и с насосными агрегатами. К агрегату 4ПА можно присоединить одновременно две автоцистерны и четыре насосных агрегата (по два с каждой стороны).

Автоцистерна 4ЦР предназначена для перевозки жидкости, используемой для гидравлического разрыва пласта, и подачи ее в пескосмесительный или насосный агрегат. Автоцистерна 4ЦР (рис. 5) смонтирована на шасси автомобиля КрАЗ-219 грузоподъемной силой 120 кН и состоит из цистерны 1, вертикального плунжерного насоса 2, системы обвязки насоса с арматурой 3, коробки отбора мощности 4, узла трансмиссии 5, узла жесткой буксировки б и искрогасителя 7.

Цистерна оборудована специальным устройством для подогрева жидкости паром. Для определения количества жидкости, отобранной из цистерны, внутри ее смонтирован поплавковый указатель уровня. Жидкость перекачивается из автоцистерны с помощью трехплунжерного вертикального насоса, имеющего производительность 16,7 л/с и максимальное давление 2,0 МПа.

Объем цистерны 9 м3. В зависимости от плотности жидкости в ней масса автоцистерны достигает 21435 кг. Габаритные размеры 10100 x 2700 х 2740 мм. Время подогрева жидкости от 20° до 50°С равно 2 ч. В настоящее время выпускают автоцистерны для жидкости разрыва емкостью 17 м3. под шифром ЦР-20, смонтирована цистерна на тягаче с прицепом. Кроме подогревательного устройства и вертикального насоса, автоцистерна снабжена центробежным. насосом производительностью по воде 100 л/с с максимально развиваемым давлением 0,2 МПа.

При гидравлическом разрыве пласта устье скважины оборудуют специальной арматурой типа 1АУ-700, которая крепится на резьбе к эксплуатационной колонне. Арматура рассчитана на работу с давлением 70 МПа и состоит из крестовины, устьевой головки, пробковых кранов, предохранительного клапана и прочих элементов обвязки.

Для регулирования работы всего комплекса оборудования и агрегата при гидравлическом разрыве пласта используется самоходный блок манифольда типа 1БМ-700, который состоит из напорного и раздаточного коллекторов, подъемной стрелы и комплекта 60-мм насосно-компрессорных труб с шарнирным и быстросборным соединениями. Все оборудование блока манифольда монтируется на шасси грузового автомобиля повышенной проходимости (ЗИЛ-157К).

Напорный коллектор состоит из клапанной коробки с шестью отводами для соединения с насосными агрегатами; центральной трубы с датчиком контрольно-измерительных приборов (манометра, плотномера и расходомера) для работы со станцией контроля и управления процессами, двух отводов для соединения с арматурой на устье скважины; пробковых кранов и предохранительного клапана. Раздаточный коллектор служит для распределения рабочих жидкостей (продавочного раствора, воды, песчано-жидкостной смеси и т. д.) насосным агрегатам.

Комплект 60-мм насосно-компрессорных труб употребляется для соединения напорного коллектора с устьем скважины и подвода к раздаточному коллектору продавочного раствора, воды и других жидкостей. Для механизации погрузки и выгрузки арматуры устья блока манифольда имеется поворотная стрела с ручным управлением.


6. РАСЧЁТ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА

1.Расчёт давления гидроразрыва пласта

Рразр = Рв.г. – Рпл + sр;

где Рв.г. – вертикальное горное давление;

Рпл – пластовое давление;

sр – давление расслоения пород. Вертикальное горное давление Рв.г. – определяют по формуле:

Рв.г. = rпgН,

где Н – глубина залегания пласта;

rп = 2500 кг/м3 – средняя плотность вышележащих горных пород.

Рв.г. = 2500*9,81*2250 = 55,181 МПа

Если давление расслоения пород sр = 1,5 МПа, то давление разрыва пласта будет:

Рразр = 55,181 – 17 + 1,5 = 39,681 МПа.

Давление разрыва на забое можно определить приближенно по эмпирической формуле:

Рразр = 104 * НК,

где К = 1,5 – 2. Принимаем среднее значение К = 1,75. Тогда

Рразр = 104 * 2250*1,75 = 39,375 МПа.

2. Расчет рабочего устьевого давления гидроразрыва.

Допустимое устьевое давление ГРП определяется по формуле:

Рд.у = - rgH + Ртр,

где Dн2, DВ2 – наружный и внутренний диаметры обсадных труб, м

Dн = 0,173м DВ = 0,144 м; sтек = 650 МПа – предел текучести стали марки L; К = 1,5 – запас прочности, Ртр = потери напора на трение в трубах определяются по формуле Дарси-Вейсбаха:

где l - коэффициент гидравлического сопротивления труб, определяется из соотношения l = 0,3164/Re0,5 для турбулентного или l = 64/Re для ламинарного режимов движения жидкости в трубе. Здесь Re (число Рейнольдса) – параметр, определяющий режим течения; при Re <2300 поток считается ламинарным, а при

Re >2300 турбулентным.

Re = ndrсм /mсм

где mсм – вязкость песчано-жидкостной смеси:

mсм=90*е3,18*0,091 = 120 мПа*с;

n - скорость движения жидкости по трубам, м/с определяется из выражения


где Q – темп закачки жидкости гидроразрыва, м3/сут (0,015 м3/сут),

F – площадь внутреннего сечения НКТ:

F = pDB2/4 = 3.14*0.1442/4 = 0.0162, м2.

Скорость движения жидкости:

n = 0,015/0,0162 = 0,926 м/с.

rсм = (rп - rж)С + rж – плотность смеси (нефть + песок),

С = С0/(С0+rп) - объёмное содержание песка, С0 – концентрация песка,

rсм = (2500-895)*0,091 + 895 = 1041 кг/м3

число Рейнольдса:

Re = 0,926*0,144*1041/(120*10-3) = 1156,76 тогда l = 64/ Re = 0,055

Потери давления на трение в трубах

Ртр = 0,055*(1041*0,9262*2250)/(2*9,81*0,144) = 0,039 МПа.

Следовательно допустимое устьевое давление составляет:

Рд.у. = (0,1732-0,1442)/(0,1732+0,1442)*(650/1,75)+17-1041*9,81*2250*10-6=

Допустимое давление на устье скважины в зависимости от прочности резьбы верхней части колонны труб на страгивающие усилия определяется по формуле

где Рстр – страгивающая нагрузка для обсадных труб из стали группы прочности L, равна 1,59 МН,

G – усилие затяжки при обвязке обсадной колонны (берётся по данным бурового журнала), равное 0,5 МН; к – запас прочности, который принимаем равным 1,5. Тогда допустимое устьевое давление:

Рд.у. = 34,4МПа.

Из полученных двух значений Рд.у. принимаем меньшее (34,4 МПа).

Возможное забойное давление при допустимом давлении на устье 34,4 МПа составит:

Рз = Рд.у. + rGН – Pтр = 34,4*106 + 1041*9,81*2250 – 0,039*106 = 57,34 МПа

Учитывая, что потребное давление разрыва на забое Рразр = 39,375 МПа меньше Рз = 57,34 МПа, определим рабочее давление на устье скважины

Ру = Рразр - rgН + Ртр = 39,375*106 - 1041*9,81*2250 + 0,039*106 = 16,9 МПа.

Следовательно, давление на устье скважины ниже допустимого, поэтому можно проводить закачку жидкости гидроразрыва по НКТ.

3. Определение необходимого количества рабочей жидкости.

Количество жидкости разрыва не поддаётся точному расчету. Оно зависит от вязкости жидкости разрыва и фильтруемости, проницаемости пород призабойной зоны скважины, темпа закачки жидкости и давления разрыва. По опытным данным объем жидкости разрыва изменяется от 5 до 10 м3. Примем для нашей скважины Vр = 7,5 м3 нефти.

Количество жидкости-песконосителя зависит от свойств этой жидкости, количества закачиваемого в пласт песка и его концентрации. На практике заготавливают 20 – 50 м3 жидкости (Vпж) и 8 – 10 т песка(Gпес).

Концентрация песка C зависит от вязкости жидкости песконосителя и темпа её закачки. Для нефти вязкостью 90 мПа*с принимаем С = 250 кг/м3. При этом условии объем жидкости песконосителя:

Vпж = Gпес/С = 8000/250 = 32 м3.

Объем жидкости-песконосителя должен быть несколько меньше емкости колонны труб, так как при закачке этой жидкости в объеме, превышающем емкость колонны, насосы в конце процесса закачки будут работать при высоком давлении, необходимым для продавливания песка в трещины. А закачка жидкости с абразивными частицами при высоких давлениях приводит к очень быстрому износу цилиндров и клапанов насосов.

Емкость 168 – мм обсадной колонны длиной 1800 м составляет 34 м3, а принятое количество жидкости-песконосителя - 29 м3

Оптимальная концентрация песка может быть определена на основании скорости падения зерен песка в принятой рабочей жидкости по формуле

Где С – концентрация песка, кг/м3 ;

n - скорость падения зерен песка диаметром 0,8 мм в м/ч в зависимости от вязкости жидкости находится графически. Для вязкости жидкости-песконосителя 90 МПа*с n = 15 м/ч, следовательно

С = 4000/15 = 267 кг/м3.

G = 267*29 = 7743 кг.

Объем продавочной жидкости во избежании оставления на забое песка следует принимать в 1,2 – 1,3 больше, чем объем колонны, по которой закачивается песок. Необходимый объем продавочной жидкости:

Vпр = =3,14*0,144^2*2250*1.3/4 =47.6 м3

4. Время проведения гидроразрыва

Т = (Vр+Vжп+Vпр) Q =(7.5+32+47.6)/ 1500=0.06сут

Где Q-суточный расход рабочей жидкости, м³

5. Радиус горизонтальной трещины

Двадцать лет назад был проведен первый в истории компании гидроразрыв пласта. Опытным полигоном для этого стало Карамовское месторождение «Ноябрьскнефтегаза». С тех пор технология гидроразрыва стала только актуальнее: сегодня ее не просто применяют для интенсификации добычи на активах «Газпром нефти» - с ней связывают большие надежды по освоению трудноизвлекаемых запасов

Первый опыт

Поиск технологий, позволяющих интенсифицировать добычу нефти, начался еще в конце XIX века в США - практически сразу после того, как стали очевидны блестящие финансовые перспективы нефтяного бизнеса. Тогда малую эффективность применявшегося бурового оборудования и способов добычи попытались компенсировать взрывами нитроглицерина в скважине. В целом мысль была верной - таким образом удавалось разрушать породы в призабойной зоне, обеспечивая больший приток пластового флюида. Впрочем, способ оказался опасным и довольным грубым.

Следующим шагом стала обработка забоя кислотой для растворения известняка, цементирующего породы некоторых нефтяных коллекторов. Первые кислотные обработки были выполнены еще в 1895 году. В промышленных масштабах этот метод стали применять лишь через 30 лет. Тогда же выяснилось, что закачка кислоты под значительным давлением оказывается более эффективной. Это дало толчок развитию идеи о разрыве твердых пород с помощью давления потока жидкости. Первопроходцами в деле внедрения гидроразрыва пласта считают американцев. Проведение первого успешного ГРП в конце 1940-х годов приписывается компании Halliburton, тогда же появилась и первая теоретическая работа на этот счет - американский инженер Кларк* описал сам метод и теоретические представления о происходящем в скважине процессе. Положительные результаты, которые наблюдались при проведении гидроразрывов, очень быстро сделали эту технологию популярной на нефтепромыслах США. Несмотря на ее малую изученность и несовершенство, уже к 1955 году общее количество гидроразрывов на американских скважинах достигло 100 тысяч.

В Советском Союзе первые ГРП начали проводить в начале 1950-х годов. Причем именно советские ученые стояли у истоков создания теоретических работ, позволяющих моделировать процесс гидроразрыва и предсказывать его результаты. Основатель Московского физтеха академик Сергей Христианович с коллегами разработали теорию образования и распространения двумерных трещин в пласте. Их наработки до сих пор используются при создании прогнозных моделей. Пик применения гидроразрыва в СССР пришелся на 1958–1962 годы, когда количество операций превышало 1,5 тыс. в год. С открытием крупных высокодебитных месторождений в Западной Сибири от применения ГРП практически отказались - «легкая» нефть позволяла обходиться без дополнительных методов интенсификации. Вновь внимание на технологию гидроразрыва в России обратили лишь в конце 1980-х, когда структура запасов нефти и газа существенно изменилась.

Динамика ГРП в «Газпром нефти»

В поисках лучшего

К сожалению, за несколько десятилетий невостребованности отечественное оборудование и опыт применения гидроразрыва пласта значительно отстали от мирового уровня. Поэтому в новейшей истории проведение ГРП на российских месторождениях сразу же стало прерогативой иностранных сервисных компаний. Сегодня ситуация на рынке изменилась, тем не менее, все новые веяния в технологии по-прежнему приходят из-за рубежа. Главный вектор развития - удешевление технологии, повышение ее эффективности и поиск способов применения в самых сложных случаях, таких как разработка нетрадиционных запасов.

Схематично ГРП можно свести к ряду последовательных операций: определение места разрыва для образования трещин в породах нефтяного пласта, создание на выбранных участках скважин условий (отверстий) для давления на пласт, закачка в пласт под большим давлением разрывающей жидкости, закачка в образовавшуюся трещину расклинивающего агента (проппанта), промывка скважины и ее эксплуатация. Со времени проведения первого ГРП так или иначе претерпели изменения все перечисленные этапы: сегодня технологию стараются максимально подогнать под условия каждого месторождения. Современный гидроразрыв, при всей массовости его применения,- это очень индивидуальная технология, обеспечивающая оптимальную эффективность именно за счет подбора параметров для каждого конкретного случая.

В первых гидроразрывах в качестве закачиваемой жидкости использовали техническую воду, а для расклинивания скважины - речной песок. ГРП проводили на любой скважине, где хотелось увеличить дебит, без предварительных расчетов возможных последствий. Современные компьютерные возможности обработки геологической информации и построения модели пла-ста позволяют выбрать наиболее подходящее место для инициации образования трещины. А дальнейшее моделирование с учетом свойств пластовых пород дает возможность рассчитать необходимые параметры закачиваемой жидко-сти и подобрать подходящий проппант, которые обеспечат получение трещины оптимальных размеров с максимальной проводимостью.

«В „Газпром нефти“ развитие технологии ГРП шло по пути поиска наиболее подходящих составов жидкости гидроразрыва, подбора оптимальных типов проппанта,- рассказывает началь-ник отдела дизайнов ГРП „Газпромнефть НТЦ“ Ильдар Файзуллин. - Закачиваемый в скважину гель в идеале должен быть достаточно вязким, чтобы не уходить в пласт, а также без потерь доносить проппант до трещины, не давая ему осесть в скважине. В то же время впоследствии жидкость должна легко вытекать из трещины, чтобы не уменьшать ее проводимость». По словам специалиста, для этого в гель ГРП добавля-ют специальные вещества - брейкеры, снижаю-щие вязкость жидкости. Современные брейкеры заключают в капсулы, которые разрушаются под давлением в трещине. Таким образом гель начинает разжижаться только после завершения образования и стабилизации трещины. Поми-мо брейкеров в состав жидкости гидроразрыва могут входить и другие специальные компонен-ты, например уменьшающие трение жидкости при прохождении по трубе. Это позволяет эконо-мить на затратах мощности. Есть свои секреты и в процессе выбора проппанта, который эволю-ционировал от обычного речного песка до шари-ков из обожженной глины или бокситов. Здесь ищут оптимальное соотношение цены, прочно- сти и проводимости расклинивающего агента в конкретных горно-геологических условиях.

Количество ГРП на нефтяных скважинах США

Новые горизонты

Сегодня странно слышать, что гидроразрыв пла-ста можно проводить лишь для того, чтобы пре-одолеть призабойную зону, испорченную оставшимся в ней буровым раствором, и связать чистый пласт со скважиной. Хотя двадцать лет назад это был обычный повод: в пластах с высо-кой проницаемостью буровой раствор загряз-нял (кольматировал) достаточно обширную зону около скважины, препятствуя нефтедобы-че. Сегодня рабочих пластов с высокой прони-цаемостью практически не осталось, а главная задача при проведении ГРП - увеличить интен-сивность нефтеотдачи за счет большего охвата продуктивной зоны, сделать рентабельной добычу из неудобных коллекторов с низкими фильтрационно-емкостными свойствами.

Многостадийный гидроразрыв пласта

Новые задачи требуют и нового подхода к реализации технологии. Так, если при первых ГРП в пласт закачивалось не более 5–10 тонн проппанта, то сегодня эти значения достигают сотен тонн. Большое количество проппанта необходимо при создании протяженных трещин, охватывающих значительную часть пласта. А чтобы достичь таких показателей закачки, нужны мощные насосы, точный расчет геометрии трещины и подходящая жидкость гидроразрыва. Подбор жидкостей - это отдельная задача, стоящая перед химиками. Можно без преувеличения сказать, что успех проведения ГРП минимум на 60% зависит от верности ее решения.

Если первые гидроразрывы в компании проводились только в наклонно-направленных скважинах, то в начале 2000-х годов было принято решение попробовать эффективность гидроразрыва на горизонтальных скважинах. Впрочем, тогда речь шла о горизонталках, пробуренных в достаточно мощных и высокопроницаемых участках на традиционных месторождениях, без существенных осложнений. Целью проведения ГРП на таких скважинах, изначально не предназначенных для этой технологии, было желание поднять добычу, уменьшившуюся вследствие естественной потери продуктивности из-за кольматации призабойной зоны скважины как частичками от матрицы породы, так и привнесенными загрязнениями при ремонтах. При этом неудачным ГРП ситуацию можно было значительно ухудшить, например, в том случае, если бы трещина соединила пласт с обводненными участками. Первый опыт гидроразрыва на горизонтальных скважинах, несмотря на все но, оказался вполне успешным и позднее позволил более уверенно подойти к внедрению технологии многостадийных ГРП на горизонтальных скважинах в низкопроницаемых коллекторах.

Массовое применение технологии многостадийного гидроразрыва пласта началось в начале ХХI века в Америке после первых настоящих успехов на сланцевых месторождениях нефти и газа. Именно МГРП стало основой сланцевой революции. В России технологию начали внедрять в 2010-х. В «Газпром нефти» в качестве пробного актива был выбран Вынгапуровский участок - месторождение, где остаточные запасы невозможно вовлечь в разработку традиционными способами. Опытно-промышленные работы по проведению здесь четырехстадийного гидроразрыва были проведены в 2011 году.

«Газпромнефть-ноябрьскнефтегаз»: 20 лет на разрыв

В середине 90‑х годов в «Ноябрьскнефтегазе» - одном из четырех предприятий, составивших основу созданной в 1995 году «Сибнефти», - объем добычи стал быстро сокращаться. Требовались альтернативные подходы к добыче на зрелых активах. Одним из таких подходов стало применение гидроразрыва пласта.

23 июня 1995 года на скважине № 459 Карамовского месторождения был проведен первый гидроразрыв в истории Ноябрьского региона. Тогда в толщу пласта закачали всего две тонны проппанта, но начало масштабному внедрению новой технологии было положено. Всего с 1995 года на месторождениях «Ноябрьскнефтегаза» провели около 4,8 тыс. операций ГРП. За это время средний объем закачиваемого проппанта увеличился до 80 тонн на скважину, а среднее количество стадий многостадийного ГРП достигло семи. Абсолютный рекорд по количеству гидроразрывов за месяц - 96 операций - в «Газпромнефть-Ноябрьскнефтегазе» был зафиксирован в октябре 2015 года.

Специалисты предприятия постоянно ищут новые варианты применения технологии ГРП.

Так, на горизонтальной скважине № 399/16 Карамовского месторождения впервые опробована технология поинтервального трехстадийного гидроразрыва пласта с предварительным проведением гидропескоструйной перфорации с малогабаритными перфораторами на гибкой насосно-компрессорной трубе (ГНКТ или койлтюбинге). Изоляция интервалов ГРП происходит за счет проппантной пробки, оставляемой в стволе скважины на финальной стадии закачки. Технология актуальна для скважин, в которых технические особенности не позволяют спускать хвостовики традиционного многостадийного ГРП (с шарами и седлами). Такие скважины обычно заканчивали зарезкой горизонтальных или наклонно-направленных боковых стволов с дальнейшим проведением одностадийного ГРП. Новая технология позволила довести число фраков до трех, обеспечивая больший приток флюида к забою скважины. Инновация обеспечит вовлечение в разработку запасов, добыча которых ранее была нерентабельной.

Также в 2015 году продолжался поиск надежной технологии для проведения повторного гидроразрыва пласта на скважинах с компоновками МГРП. «У нас есть значительный фонд скважин как в Ноябрьске, так и в других регионах, где повторный многостадийный ГРП будет уместен, - рассказал начальник отдела дизайнов ГРП „Газпромнефть НТЦ“ Ильдар Файзуллин. - Поэтому сегодня главная задача - найти наиболее подходящую технологию». Вся сложность состоит в том, что для повторного гидроразрыва необходимо перекрыть уже имеющиеся открытые трещины. В настоящее время на Вынгапуровском месторождении проводятся опытные работы с применением специальных добавок, которые закачиваются в старые трещины до проведения повторного гидроразрыва и блокируют их, чтобы свести к минимуму утечки жидкости ГРП.

У многостадийного ГРП есть одно важное отличие от обычного гидроразрыва: для его реализации требуется специальное оборудование, опускаемое в скважину при ее заканчивании. Причем вариантов такого оборудования немало - его нужно подбирать исходя из пластовых условий и экономической целесообразности.

«Изначально при проведении МГРП на горизонтальных скважинах мы использовали компоновки с муфтами одноразового действия и нерастворимыми композитными шарами в качестве отсекателей (см. схему),- вспоминает Ильдар Файзуллин.- Заколонное пространство перекрывали с помощью разбухающих пакеров - своеобразных пробок, набухающих под действием нефти. Пакера разбивали на секции пространство за эксплуатационной колонной, куда могла попасть жидкость ГРП с проппантом в процессе постадийного проведения гидроразрыва. Сегодня мы уже имеем опыт цементирования заколонного пространства. Это более сложная и дорогая операция, но она обеспечивает надежность проведения гидроразрыва и позволяет лучше контролировать места инициации трещин».

Уже в 2014 году количество многостадийных гидроразрывов на горизонталках в «Газпром нефти» выросло до 168 операций за год. Причем меняется не только количество, но и качество: сегодня обычным делом считается 10-стадийный гидроразрыв, а рекордное к настоящему времени количество стадий - 15 - проведено на Южно-Приобском месторождении «Газпромнефть-Хантоса» в конце уходящего года.

Александр Билинчук,
начальник департамента геологии и разработки:

С каждым годом объем запасов углеводородов в легко разрабатываемых пластах снижается, и на смену приходят низкопроницаемые объекты, выраженные высокой неоднородностью и низкими коллекторскими свойствами с высокой степенью расчлененности пласта. Это негативно сказывается на уровнях добычи углеводородов.

Один из наиболее эффективных методов повышения продуктивности скважин, вскрывших такие пласты,- ГРП, который позволяет значительно увеличить темп отбора нефти. После ГРП увеличивается связь скважины с системой естественных трещин и с зонами повышенной проницаемости, расширяется область пласта, дренируемая скважиной.

Наиболее широкое распространение получила технология многостадийного ГРП в горизонтальных скважинах, в результате применения которой кратно повышается дебит добывающих скважин. Также сегодня мы развиваем уникальные технологии, в ряду которых многоствольные скважины с проведением МГРП в каждом из стволов. На текущий момент идет бурение первой в России двуствольной скважины с МГРП на Крайнем месторождении. Кроме того, сейчас активно испытываются технологии проведения повторного МГРП, использование которых станет актуально через несколько лет.

Последнее слово в развитии технологии - компоновки с многоразовыми муфтами и пакером в качестве отсекателя зон с уже проведенным гидроразрывом (см. схему). В этом случае пакер, активируемый при механическом сдавливании, заменяет традиционные композитные шары, позволяя делать максимальное число стадий разрыва, ограниченное только длиной скважины и экономическими расчетами. Оборудование для открытия муфт с инсталлированным пакером спускается в скважину на гибких трубах (койлтюбинге). В «Газпром нефти» подобная технология проведения ГРП впервые была применена на Приобском месторождении. Именно с ее помощью удалось увеличить количество стадий разрыва до 15 с перспективой и дальнейшего роста.

Трудноизвлекаемый опыт

Как это ни парадоксально, нельзя сказать, что с развитием технологии гидроразрыва она комплексно усложняется. Есть отдельные этапы, которые, несомненно, обрастают более сложной техникой, - например, моделирование развития трещин, вторичные методы исследования скважин для получения наиболее достоверной картины и анализа гидроразрыва - сейсмика, геофизические методы исследования. В то же время более мощные насосы дают возможность использовать менее сложные жидкости гидроразрыва - при высоких скоростях закачки вязкость жидкости может быть невысокой, а в некоторых случаях это и вовсе необходимое условие успешного ГРП. К таким случаям относится многостадийный разрыв в слабопроницаемых коллекторах, например, баженовской свите.

Нефтяные залежи, относящиеся к бажену, сегодня надежда отечественной нефтянки. «Газпром нефть» тратит немало средств и сил на то, чтобы найти оптимальный способ разработки таких трудноизвлекаемых запасов. Очевидно, что главным инструментом здесь должен стать многостадийный гидроразрыв пласта - осталось подобрать его оптимальные параметры. Как показал опыт проведения первых МГРП на бажене, стандартные жидкости и компоновки здесь оказываются недостаточно эффективными. В твердых породах баженовской свиты удается создать очень узкие трещины, а гель ГРП с обычной вязкостью в таких трещинах оседает, образуя плохо смываемую полимерную пленку. Выход - использовать в качестве жидкости воду или даже «скользкую воду» - с пониженным трением.

Хотя изначально для гидроразрыва использовали именно воду, от нее скоро отказались. Причина проста: в силу малой вязкости вода не доносит проппант до трещины, он оседает в скважине и не только не способствует образованию трещины, но и мешает проведению операции. Сегодня с этой проблемой можно справиться за счет мощнейших насосов и сверхвысоких скоростей закачки - в этом случае проппант просто не успевает выпасть в скважине. Именно такой вариант решено было применить на бажене. При увеличении скорости течения жидко- сти растет и давление на стенки трубы. Чтобы не превышать допустимых параметров давле- ния, необходимо использовать трубы большего диаметра. На практике это означает, что от при- менения компоновок ГРП с муфтами и насоснокомпрессорными трубами (НКТ) на бажене при-шлось отказаться.

«Первый десятистадийный ГРП на баженовской свите по новой схеме был проведен на Паль-яновском месторождении в декабре 2015 года, рассказал главный геолог „Газпромнефть-Хантоса“ Михаил Черевко. - Мы использовали безшаровую технологию ГРП, в которой стадии гидроразрыва отделяются друг от друга специ-альными пробками, спускаемыми на гибких насосно-компрессорных трубах (ГНКТ), а закачка проппанта при каждом ГРП ведется через перфо-рационные каналы. Эта технология дала возмож- ность создания разветвленной системы трещин, направление которых мы можем задавать и кон-тролировать». На Западе эта технология успешно применяется уже около десяти лет и носит название рlug and perf. В этом случае пласт вскрыва-ется с помощью гидропескоструйной перфора-ции без использования муфт, причем в рамках одной стадии разрыва делается сразу несколько отверстий, что позволяет создавать сеть трещин, а не одну магистральную трещину, как при обычном ГРП. Жидкость гидроразрыва нагнетается прямо по эксплуатационной колонне, без спуска в скважину колонны НКТ, а разделение стадий разрыва происходит специальными композит- ными пробками.

Насколько эффективной окажется такая технология проведения МГРП покажет время. «В России к настоящему моменту по техноло-гии рlug and perf сделано две скважины, обе удачные, - поделился руководитель направления по заканчиванию скважин проекта „Бажен“ „Газпром нефти“ Александр Мильков.- Мы так- же надеемся на положительный результат».

Впрочем, поиск новых решений продолжает-ся, благо еще есть куда стремиться. По мнению Александра Милькова, будущее - за мобильным оборудованием, повышением скорости закачки и упрощением химического состава гелей ГРП. А в целом - за недорогими и эффективными решениями.

Эта технология, применяемая для интенсификации работы и повышения отдачи нефтедобывающих скважин уже более полувека, вызывает, пожалуй, наиболее жаркие споры среди экологов, ученых, простых граждан, а нередко даже и самих работников добывающей отрасли. Между тем смесь, которая закачивается в скважину во время гидроразрыва, на 99% состоит из воды и песка, и лишь на 1% – из химических реагентов.

Что мешает нефтеотдаче

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией - снижение проницаемости призабойной зоны пласта. Так называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую эксплуатацию и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта. Само бурение вносит изменения в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения бурового раствора или его фильтрата в призабойную зону пласта

Причиной низкой продуктивности скважин может быть и некачественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважинах, где энергия взрыва зарядов поглощается энергией больших гидростатических давлений.

Снижение проницаемости призабойной зоны пласта происходит и при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальтосмолистых веществ, закупоривающих поровое пространство коллектора. Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения в нее рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства пласта продуктами коррозии, илом, нефтепродуктами, содержащимися в закачиваемой воде. В результате протекания подобных процессов возрастают сопротивления фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.

Технология фрекинга

Для повышения нефтеотдачи пласта, интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин используется метод гидровлического разрыва пласта или фрекинга. Технология заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает – либо же существенно снижается депрессия. Технология ГРП позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна.

Гидравлический разрыв пласта (ГРП) является одним из наиболее эффективных средств повышения производительности скважин, поскольку приводит не только к интенсификации выработки запасов, находящихся в зоне дренирования скважины, но и, при определенных условиях, позволяет существенно расширить эту зону, приобщив к выработке слабо дренируемые зоны и пропластки – и, следовательно, достичь более высокой конечной нефтеотдачи.

История метода ГРП

Первые попытки интенсификации добычи нефти из нефтяных скважин были предприняты еще в 1890-х годах. В США, где добыча нефти в это время развивалась стремительными темпами, был успешно испытан метод стимулирования добычи из плотных пород с помощью нитроглицерина. Идея заключалась в том, чтобы взрывом нитроглицерина раздробить плотные породы в призабойной зоне скважины и обеспечить увеличение притока нефти к забою. Метод успешно применялся некоторое время, несмотря на свою очевидную опасность.

Первый коммерчески успешный гидроразрыв пласта был осуществлен в 1949 году в США, после чего их количество стало резко возрастать. К середине 50-х годов количество проводимых ГРП достигло 3000 в год. В 1988 году общее количество проведенных ГРП перевалило за 1 миллион операций, и это только в США.

В отечественной практике метод ГРП начали применять с 1952 года. Пик применения метода был достигнут в 1959 году, после чего количество операций снизилось, а затем эта практика и вовсе прекратилась. С начала 1970-х и до конца 1980-х ГРП в отечественной нефтедобыче в промышленных масштабах не проводились. В связи с вводом в разработку крупных нефтяных месторождений Западной Сибири потребность в интенсификации добычи попросту отпала.

И день сегодняшний

Возрождение практики применения ГРП в России началось только в конце 1980-х. В настоящее время лидирующие позиции по количеству проводимых ГРП занимают США и Канада. За ними следует Россия, в которой применение технологии ГРП производят в основном на нефтяных месторождениях Западной Сибири. Россия – практически единственная страна (не считая Аргентины) за пределами США и Канады, где ГРП является привычной практикой и воспринимается вполне адекватно. В других странах применение технологии гидроразрыва затруднено из-за местных предубеждений и недопонимания технологии. В некоторых из них действуют существенные ограничения по использованию технологии ГРП вплоть до прямого запрета на ее применение.

Ряд экспертов утверждают, что использование технологии гидроразрыва при добыче нефти – это нерациональный, варварский подход к экосистеме. В то же время, метод широко применяется практически всеми крупными нефтяными компаниями.

Применение технологии ГРП достаточно обширно – от низко- до высоко проницаемых коллекторов в газовых, газоконденсатных и нефтяных скважинах. Кроме того, с использованием ГРП можно решать специфические задачи, например, ликвидировать пескопроявления в скважинах, получать информацию о ФЕС объектов испытания в поисково-разведочных скважинах и т.д..

В последние годы развитие технологий ГРП в России направлено на увеличение объемов закачки проппанта, производство азотных ГРП, а также многостадийных ГРП в пласте.

Оборудование для гидроразрыва пласта

Оборудование, необходимое для гидроразрыва пласта, производит целый ряд предприятий, как зарубежных, так и отечественных. Одно из них - компания «ТРАСТ-ИНЖИНИРИНГ» , которая представляет широкий выбор оборудования для ГРП в стандартном исполнении, так и в виде модификации, выполняемой по желанию заказчика.

В качестве конкурентных преимуществ продукции ООО «ТРАСТ-ИНЖИНИРИНГ» необходимо отметить высокую долю локализации производства; применение самых современных технологий проектирования и производства; использование узлов и комплектующих от мировых лидеров отрасли. Важно отметить и присущую специалистам компании высокую культуру проектирования, производства, гарантийного, постгарантийного и сервисного обслуживания. Оборудование для ГРП производства ООО «ТРАСТ-ИНЖИНИРИНГ» легче приобрести благодаря наличию представительств в Москве (Российская Федерация), Ташкенте (Республика Узбекистан), Атырау (Республика Казахстан), а также в Панчево (Сербия).

Разумеется, метод ГРП, как и любая другая технология, применяемая в добывающей отрасли, не лишен определенных недостатков. Один из минусов фрекинга – в том, что положительный эффект операции может быть сведён на нет непредвиденными ситуациями, риск возникновения которых при столь обширном вмешательстве довольно велик (например, возможно непредвиденное нарушение герметичности близлежащего водного резервуара). Вместе с тем. гидравлический разрыв пласта является сегодня одним из наиболее эффективных методов интенсификации скважин, вскрывающих не только низкопроницаемые пласты, но и коллекторы средней и высокой проницаемости. Наибольший эффект от проведения ГРП может быть достигнут при внедрении комплексного подхода к проектированию гидроразрыва как элемента системы разработки с учетом разнообразных факторов, таких как проводимость пласта, система расстановки скважин, энергетический потенциал пласта, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения.