Схема электрическая esr измерителя конденсаторов. Измеритель ESR оксидных конденсаторов

ИЗМЕРИТЕЛЬ ESR

Для проверки конденсаторов, решил собрать так называемый "измеритель ESR”. Ведь с испытанием диодов и резисторов проблем не возникает, а вот с конденсаторами сложнее. Как известно, ESR - это сокращение от Equivalent Serial Resistance, - означает "эквивалентное последовательное сопротивление”. Объясним проще. В упрощенном виде электролитический конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного электролитом (отсюда и название электролитический). Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности. К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.

В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками. Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, который находится в самом конденсаторе. Зарядные и разрядные токи вызывают нагрев этого "резистора”, что еще больше усиливает разрушительный процесс. Другая причина выхода из строя электролитического конденсатора - это "высыхание”, когда из-за плохой герметизации происходит испарение электролита. В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается. Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением десяток Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения). Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до пары Ом) на работе импульсных блоков питания.

Принцип работы данного измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе.

Как известно, Xс=1/2πfC , где

Xс - емкостное сопротивление, Ом;
f - частота, Герц;
С - емкость, Фарад.

На микросхеме DD1 собран генератор прямоугольных импульсов (элементы D1.1, D1.2), буферный усилитель (элементы D1.3, D1.4) и усилительный каскад на транзисторах. Частота генерации определяется элементами С1 и R1 и равна 100 кГц. Прямоугольные импульсы через разделительный конденсатор С2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде включен микроамперметр, по шкале которого отсчитывают значение ESR. Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению "бесконечность” измеряемого ESR. Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю. При наличии же в измеряемом дефекта, в нем повышается значение ESR. Часть переменного тока потечет через обмотку, и стрелка будет все меньше отклоняться от значения "бесконечность”. Чем больше ESR, тем больший ток протекает через обмотку и меньший через конденсатор, и тем ближе к положению "бесконечность” находится стрелка.

Трансформатор наматывают на ферритовом кольце с внешним диаметром 10...15 мм. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,5 мм, вторичная - 200 витков ПЭВ-2 диаметром 0,1 мм. Диод обязательно должен быть германиевым, например Д9, Д310, Д311, ГД507. Кремниевые диоды имеют большое пороговое напряжение открывания (0,5...0,7 В), что приведет к сильной нелинейности шкалы измерителя в области измерения малых сопротивлений. Градуируют измеритель ESR с помощью нескольких резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании. Поэтому провода, идущие к щупам, должны быть по возможности короткими. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом. Затем подключают резисторы на 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений. На этом можно остановиться, так как электролитические конденсаторы емкостью более 4,7 мкФ с ESR больше 10 Ом хотя и могут работать, но уже не долго:)

Степан Миронов.

Измеритель ESR+LCF v3.

Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их - не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% - это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% - не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.

Ориентировочная таблица допустимых значений ESR, приведена ниже:

Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором - "aESR" (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.

На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте - эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме "ESR", а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью "анализатора - aESR".

Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания "aESR" в большинстве случаев немного выше показаний "ESR". Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.

Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.

На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.

При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” - это превышение нормы.

К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.

И так, что же может мой измеритель.

Измеритель ESR+LCF v3 - измеряет

Дополнительные функции:

В режиме ESR можно измерять постоянные сопротивления 0.001 - 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 - 20Ом.
- В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора (подробное описание см. далее).
- В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+».
- Индикация разряда батареи.
- Автоматическое отключение - около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись "StBy" и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме.

В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора.
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P».

Принципиальная схема.

"Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877.

Конструкция и детали.

ЖК - индикатор на основе контроллера HD44780, 2 строки по 16 знаков.
Контроллер - PIC16F886-I/SS.
Транзисторы BC807 - любые P-N-P, близкие по параметрам.
ОУ TL082 - любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется.
Полевой транзистор P45N02 - 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера.
Дроссель L101 - 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм.
С101 - 430-650пФ с низким ТКЕ, К31-11-2-Г - можно найти в КОС отечественных телевизоров 4-5 поколения (КВП контура).
С102, С104 4-10мкФ SMD - можно найти в любой старой компьютерной материнской плате Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
BF998 - можно найти в СКВ, телевизоров и видеомагнитофонов ГРЮНДИК.
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2.

Печатная плата выполнена из одностороннего стеклотекстолита.

Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм.

Крышки сделаны из чёрной пластмассы.

Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” - гнездо более высокого качества.

Конструкция щупа:

В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла.

Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя.

Удачи всем и всего наилучшего!

miron63 .

Архив Измеритель ESR+LCF v3.

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока , то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P=I 2 xR

где

P – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло;-) И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром :


Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к . С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:


Вместо “Cx” (в штриховом прямоугольнике) мы здесь ставим конденсатор, у которого замеряем ESR.

Для того, чтобы не травить лишний раз платку, я взял и спаял на ней. На Али я взял целый набор этих макеток. Это получается даже дешевле, чем покупать фольгированный текстолит.


С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ


Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как М онтажный, Г ибкий, Т еплостойкий, в Ф торопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:


Микросхемы по привычке всегда ставлю в панельки:


При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:


Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:


Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп :


Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:


Провода, идущие к пинцету, закреплены каплей термоклея . Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф , замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:


Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора





Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (Н изкоЧ астотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

Equivalent Series Resistance (Эквивалентное Последовательное Сопротивление - ЭПС), как один из значимых паразитных параметров электролитических конденсаторов, в последние годы приобрёл широкую популярность среди ремонтников электронной аппаратуры. Измерители и пробники ESR для многих мастеров стали прибором первой необходимости наряду с тестером или мультиметром.
Увеличение ESR конденсатора на несколько Ом, а иногда на несколько десятых долей Ома, может являться причиной неработоспособности устройства, в котором он установлен, что иногда невозможно выявить существующими измерителями ёмкости, не способными учитывать другие параметры конденсатора.

Обычно в ремонтной практике не требуется особой точности в измерении ESR, поэтому ощутимая погрешность пробников чаще не вызывает неудобств в отыскании неисправных элементов, а определение состояния конденсатора пробником может упрощаться до оценки его качества по принципу – годен или не годен для работы в конкретном узле устройства.
Но, следует отметить, для конденсаторов, работающих при больших импульсных токах, например, в фильтрах преобразователей, иногда требуется более объективная оценка качества, а погрешность в десятые и даже сотые доли Ома может иметь существенное значение.

Большинство популярных и применяемых в ремонтной практике приборов и пробников ESR основаны на измерении полного сопротивления переменному току на частоте 40 - 100 кГц. На частотах этого порядка для электролитических конденсаторов больших номиналов такие приборы покажут значения, максимально близкие к величине ESR, которая составит основную часть импеданса на этих частотах.
Недостатком такого способа является значительная погрешность при измерении малых номиналов ёмкостей (менее 10 uF), когда реактивное сопротивление конденсатора на данной частоте соизмеримо и может превышать ESR.
Тогда прибор покажет значение импеданса, а реальное значение ESR может быть в несколько раз меньше.

Одним из требований в плане практичности использования ESR-пробников является возможность производить замеры без выпаивания конденсатора из платы. Следовательно, процесс измерения должен происходить при достаточно низком падении напряжения на проверяемом конденсаторе, исключая отпирание переходов полупроводниковых элементов схемы.

В большинстве случаев такие нехитрые измерители импеданса мастера собирают самостоятельно по схемам, широко распространённым в интернете, но кто-то применяет и свои разработки с учётом личных предпочтений в плане удобства пользования или точности измерений.
В продаже существуют как простые пробники со светодиодной или стрелочной индикацией, так и измерители с цифровой шкалой различной степени сложности.

Подробно останавливаться на принципах и методах измерения импеданса нет необходимости, таких обсуждений и описаний существует достаточно много и их нетрудно найти в интернете. Но некоторые особенности отдельных конструкций всё же могут заслуживать внимания.

В этой статье предлагается рассмотреть один из способов измерения ESR и ёмкости, как отдельных параметров конденсатора.

Достаточно точный и несложный метод, который используется во многих любительских и промышленных приборах, реализован в измерителе Micro, популярном среди мастеров – участников ремонтных форумов monitor.net.ru и monitor.espec.ws.

Если испытываемый конденсатор ёмкостью C заряжать от источника постоянного тока I , напряжение на его выводах будет линейно нарастать от значения U R по закону:

C dU/dt = I = const .

U R – падение напряжения на активном сопротивлении конденсатора (ESR).

В таком случае ёмкость конденсатора будет определяться выражением:

Посчитать U R для вычисления ESR можно несколькими способами, например, составив уравнение прямой по двум точкам и найти координату Y для нулевого значения X, либо геометрически, исходя из соотношения сторон подобных треугольников...

Активное сопротивление конденсатора (ESR) в таком случае составит:

Для реализации такого метода нет необходимости в применении АЦП, пороговые значения напряжений для управления таймером устанавливаются компараторами, а математические вычисления ёмкости и ESR производятся микроконтроллером с выводом информации на ЖК дисплей.

В некоторых подобных конструкциях для измерения ESR используется более простой, но менее точный способ.
Производится измерение уровня напряжения U R посредством АЦП в начальный момент времени.
Несмотря на то, что измерительный импульс достаточно короткий (1-2 uS), конденсаторы меньшей ёмкости успевают зарядиться до большего значения, чем конденсаторы большой ёмкости, что создаёт некоторую погрешность в измерении ESR разных номиналов конденсаторов.

Следует учитывать, что ESR, измеренный постоянным током, является относительным показателем качества электролитического конденсатора.
Значимой составляющей ESR являются диэлектрические потери, которые существенно меняются с изменением частоты переменного тока.

Существуют более сложные и точные методики и способы измерений, основанные на анализе сдвига фаз в конденсаторе. В этом случае ESR определится произведением импеданса и тангенса угла потерь.

Замечания и предложения принимаются и приветствуются!

В статье приводятся варианты схемы простого прибора, позволяющего находить неисправные электролитические конденсаторы, не выпаивая их из схемы. Кроме того, данным прибором можно “прозванивать” электрические цепи, проверять прохождение сигнала в устройствах ВЧ и НЧ, оценивать моточные изделия на предмет наличия короткозамкнутых витков.

Несколько лет назад в Интернете автор обнаружил схему несложного прибора, позволяющего выявлять неисправные электролитические конденсаторы. Заинтересовавшись этим, автор решил собрать и испытать этот “измеритель ESR”. Результат превзошел все ожидания: телевизор Toshiba, находившийся в ремонте несколько дней (не запускался БП), был отремонтирован буквально за 5 минут. С помощью этого прибора были обнаружены два электролитических конденсатора с повышенным ESR, которые до этого были выпаяны из платы и проверены обычным тестером на “подергивание стрелки”. Стрелка отклонялась, и исправность конденсаторов не вызывала сомнений. После замены конденсаторов телевизор нормально заработал.

Итак, обо всем по порядку. Для начала позвольте немного теории, чтобы полнее представлять суть проблемы. ESR - это аббревиатура от английских слов Equivalent Serial Resistance, в переводе означает “эквивалентное последовательное сопротивление”. В упрощенном виде электролитический (оксидный) конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного специальным составом - электролитом. Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности. К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.

Cхема простейшего измерителя ESR





Рис. 5 Внешний вид прибора
Рис. 6 Расположение деталей внутри корпуса
Рис. 7 RC-генератор

  • Спасибо китайцам... при всём патриотизме... тогда достать такие детали как в нём было сложно и дорого чтоб спаять... теперь... купить его за 40 тонн... и в случае ремонта... наверное уже невозможно... Так что при союзе... это было в мочь только военке видьмо... :) https://www....1&d=1521698404
  • Превратились в более компактные приборы,отвечающие современным требованиям. https://prist.ru/produces/pdf/akip-6106,6107.pdf
  • Та...ты... шо?! Эт те рекламный диллер расказал... или ты сам он и есть? " Измеритель RLC Е7-13 Измерен. емкости 0,1пФ - 10мкФ, индуктивн. 1мкГн - 10Гн, сопротивл. 0,01 Ом - 1МОм, проводимости 0,001мкС - 100мС. Базов. погр. 0,2%. Питание 220В/5,6 - 10В (аккум). Цифр. индикация. Рабоч. темп. от -10 до 50*С. Габариты 227х200х70мм. Масса 2кг. "
  • Это приборы-измерители имитанса. Измеряют R, L, C либо полное сопротивление. Даже не представляю как найти ЭПС. Теоретически можно будет высчитать ЭПС, для этого нужно знать полное сопротивление и емкостное сопротивление. Но емкостное сопротивление можно высчитать том случае, когда мы точно знаем емкость. Но ESR приходится мерить уже старых конденсаторов: у них емкость может заметно снизиться(из за усыхания). Поэтому определить невозможно. Да и к тому же рабочая частота всего одна- 1 кГц.
  • http://js.mamydirect.com/redir/click...98%26page%3D21 По таблицам.
  • Нахер тебе реактивка? Тебе ЭПС нужно. А когда кондер просажен, то и это не поможет
  • Наверно тогда частота 100кГц не была так востребована.Чего не скажешь про наше время. http://tel-spb.ru/esr.html
  • Всё востребовано. Е7-15, сделано в СССР Технические характеристики приборов измерители иммитанса Е7-15: Диапазоны измерения - 0,1пФ-20мФ, 1 МОм-20 МОм, 0,1мГн-16кГн; Управление процессором прибора измеритель иммитанса E7-15; Погрешность измерения - 0,25%; Рабочие частоты - 100Гц, 1кГц; Напряжение смещения прибора измеритель иммитанса E7-15 - 5В; Уровень сигнала - 2В эфф; Индикация - цифровая, 3,5 десятичных разряда; Питание прибора измеритель иммитанса E7-15 - 220В; 50Гц, 400Гц; Габариты - 228X120X380мм; Масса - 3кг. Цена на радиорынке в Краснодаре 4 тыс.руб. Бери не хочу.
  • Нет 10 и 100кГц. Е7-14-100Гц,1кГц,10кГц.
  • Ну как бы их проверяли не на какой-то там эпс, а согласно параметрам в ТУ. По тангенсу или по добротности что собственно одно и то же. А эпс... кого интересовал тот всегда мог пересчитать из тангенса. И насчет частоты, последовательного сопротивления и иже с ним... Согласно ТУ измерение тангенса\ добротности (сдаточный параметр) проводилось\проводится на одной частоте, чаще всего на 50 гц, однако как обязательные справочные данные приводится либо таблица либо график зависимости добротности от частоты, для каждого из присутствующих в ТУ номиналов. А чем меряли... мостами обычно. Тем же Е7-8 к примеру. На нем кстати удается померять добротность фторпласта, не прямо естественно. А большего имхо почти никогда и не надоть.
  • Norman777 Кто Вам мешает измерить ёмкость, а потом измерить и сравнить ESR по таблице или datasheet? Измерители ESR работают на таких частотах, когда реактивное сопротивление на столько мало, что может не учитываться в значении ESR .
  • Часто мелькает таблица качества конденсаторов.
  • Это не корректная таблица. Значение ESR зависит и от напряжения, на которое рассчитан конденсатор.
  • sergeisam, Данные таблицы близки к характеристикам конденсаторов заявляемым производителями. Вы можете убедиться в этом ознакомившись с https://www....le&dlfileid=53
  • В февральском номере журнала "Радио" за этот год была методика измерения ёмкости и ESR при помощи генератора и осциллографа: Кто что может про неё сказать и можно ли в данном случае пользоваться недорогими китайскими осциллографами-конструкторами?
  • Можно, наверное, просто зачем? Готовый ESR - метр стоит порядка 10 - 15 у.е., измеряет ESR, емкости, индуктивности, сопротивления... А эта схема - анахронизм... Вот, например, гораздо дешевле десятки: https://3v3.com.ua/product_4734.html Я купил себе нечно подобное, полезнейшая штука. Рекомендую...
  • batareika Схема интересна тем,что измерения делаются на плате.Измерительное напряжение 0,1-0,3в. kovigor Готовый ESR метр адаптирован под измерения на плате?
  • Нет... в том плане что если есть напруга... требуется доработка... а так... вроде меряет...
  • Забудьте о корректных измерениях на плате без выпайки - компоненты, установленные рядом и соединенные с интересующим вас компонентом, будут вносить в результаты измерений неконтролируемые погрешности. Да и не нужны эти измерения без выпайки никому, разве только новичкам-лентяям. Неужели так трудно отпаять одну ножку компонента, если это DIP, или выпаять компонент феном, если это SMD, и провести настоящее, корректное измерение? Ну, допустим, там 0.1 - 0.3В. Полупроводники влиять не будут (в первом приближении). Но ведь плата не из одних полупроводников состоит. Резисторам, конденсаторам, индуктивностям глубоко по боку, 0.1В там или, скажем, 12В...
  • Работает хорошо, панелька - говно. Вы конечно правы,но это если лезть в академические дебри о точности. Если же подходить к вопросу с точки зрения оценочных измерений, то ESR-Micro V4.0S которым я пользуюсь вполне способен и в плате измерять, не выпаивая. И я на этом форуме выкладывал фото, где esr-micro и прибор по вашей ссылке(кстати сделанный немцем, бескорыстно выложены в сеть исходники и т.п. и т.д. и бессовестно размножаемые китайцами) показывают совершенно идентичные цифры.