Натриевый насос. Натриево-калиевый насос или помпа

Новая гипотеза механизма работы Na,K-АТФазы рассматривается здесь: Механизм натрий-калиевого насоса

Работа калий-натриевого насоса, в свою очередь, имеет 2 следствия:

1.1. Непосредственное электрогенное (порождающее электрические явления) действие ионного насоса-обменника. Это создание небольшой электроотрицательности внутри клетки (-10 мВ).

Виноват в этом неравный обмен натрия на калий. Натрия выбрасывается из клетки больше, чем поступает в обмен калия. А вместе с натрием удаляется и больше "плюсиков" (положительных зарядов), чем возвращается вместе с калием. Возникает небольшой дефицит положительных зарядов. Мембрана изнутри заряжается отрицательно (примерно -10 мВ).

1.2. Создание предпосылок для возникновения большой электроотрицательности.

Эти предпосылки - неравная концентрация ионов калия внутри и снаружи клетки. Лишний калий готов выходить из клетки и выносить из неё положительные заряды. Об этом мы скажем сейчас ниже.

2. Утечка ионов калия из клетки.

Из зоны повышенной концентрации внутри клетки ионы калия выходят в зону пониженной концентрации наружу, вынося заодно положительные электрические заряды. Возникает сильный дефицит положительных зарядов внутри клетки. В итоге мембрана дополнительно заряжается изнутри отрицательно (до -70 мВ).

Финал

Калий-натриевый насос создает предпосылки для возникновения потенциала покоя. Это - разность в концентрации ионов между внутренней и наружной средой клетки. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка клетки выравнять концентрацию ионов по калию приводит к потере калия, потере положительных зарядов и порождает электроотрицательность внутри клетки. Эта электроотрицательность составляет большую часть потенциала покоя. Меньшую его часть составляет непосредственная электрогенность ионного насоса, т.е. преобладающие потери натрия при его обмене на калий.

Мембранный потенциал покоя

Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны. Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». Величина МПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называютдеполяризацией, увеличение - гиперполяризацией, восстановление исходного значения МПП -реполяризацией мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К + (в ряде клеток и для СГ), менее проницаема для Na + и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через мембрану.

Возникающая разность потенциалов препятствует выходу К + из клет­ки и при некотором ее значении наступает равновесие между выходом К + по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту. Мембранный потенциал, при ко­тором достигается это равновесие, называется равновесным потенци­алом. Его величина может быть рассчитана из уравнения Нернста:

где Е к - равновесный потенциал для К + ; R - газовая постоянная; Т - абсолютная температура; F - число Фарадея; п - валентность К + (+1), н + ] - [К + вн ] - наружная и внутренняя концентрации К + -

Если перейти от натуральных логарифмов к десятичным и под­ставить в уравнение числовые значения констант, то уравнение примет вид:

В спинальных нейронах (табл. 1.1) Е к = -90 мв. Величина МПП, измеренная с помощью микроэлектродов заметно ниже - 70 мв.

Таблица 1.1 . Концентрация некоторых ионов внутри и снаружи спинальных мотонейронов млекопитающих

Концентрация

(ммоль/л Н 2 О)

Разновесный потенциал (мв)

внутри клетки

снаружи клетки

Мембранный потенциал покоя = -70 мв

Если мембранный потенциал клетки имеет калиевую природу, то, в соответствии с уравнением Нернста, его величина должна линейно снижаться с уменьшением концентрационного градиента этих ионов, например, при повышении концентрации К + во внеклеточной жид­кости. Однако линейная зависимость величины МПП (Мембранный потенциал покоя) от градиента концентрации К + существует только при концентрации К + во вне­клеточной жидкости выше 20 мМ. При меньших концентрациях К + снаружи клетки кривая зависимости Е м от логарифма отношения концентрации калия снаружи и внутри клетки отличается от теоре­тической. Объяснить установленные отклонения экспериментальной зависимости величины МПП и градиента концентрации К + теорети­чески рассчитанной по уравнению Нернста можно, допустив, что МПП возбудимых клеток определяется не только калиевым, но и натриевым, и хлорным равновесным потенциалами. Рассуждая ана­логично с предыдущим, можно записать:

Величины натриевого и хлорного равновесных потенциалов для спинальных нейронов (табл. 1.1) равны соответственно +60 и -70 мв. Значение Е Cl равно величине МПП. Это свидетельствует о пассив­ном распределении ионов хлора через мембрану в соответстии с химическим и электрическим градиентами. Для ионов натрия химический и электрический градиенты направлены внутрь клетки.

Вклад каждого из равновесных потенциалов в величину МПП определяется соотношением между проницаемостью клеточной мем­браны для каждого из этих ионов. Расчет величины мембранного потенциала производится с помощью уравнения Гольдмана:

Е m - мембранный потенциал; R - газовая постоянная; Т - аб­солютная температура; F - число Фарадея; Р K , P Na и Р Cl - константы проницаемости мембраны для К + Na + и Сl, соответственно; + н ], , [Сl - н ] и[Сl - вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.

Подставляя в это уравнение полученные в экспериментальных ис­следованиях концентрации ионов и величину МПП, можно пока­зать, что для гигантского аксона кальмара должно быть следующее соотношение констант проницаемости Р к: P Na: Р С1 = I: 0,04: 0,45. Очевидно, что, поскольку мембрана проницаема для ионов натрия (Р Na =/ 0) и равновесный потенциал для этих ионов имеет знак «плюс», то вход последних внутрь клетки по химическому и элект­рическому градиентам будет уменьшать электроотрицательность ци­топлазмы, т.е. увеличивать МПП (Мембранный потенциал покоя).

При повышении концентрации ионов калия в наружном растворе выше 15 мМ МПП увеличивается и соотношение констант прони­цаемости меняется в сторону более значительного превышения» Р к над P Na и Р С1 . Р к: P Na: Р С1 = 1: 0.025: 0,4. В таких условиях МПП определяется почти исключительно градиентом ионов калия, поэто­му экспериментальная и теоретическая зависимости величины МПП от логарифма отношения концентраций калия снаружи и внутри клетки начинают совпадать.

Таким образом, наличие стационарной разности потенциалов меж­ду цитоплазмой и наружной средой в покоящейся клетке обуслов­лено существующими концентрационными градиентами для К + , Na + и Сl и различной проницаемостью мембраны для этих ионов. Основную роль в генерации МПП играет диффузия ионов калия из клетки в наружный наствор. Наряду с этим, МПП определяется также натриевым и хлорным равновесными потенциалами и вклад каждого из них определяется отношениями между проницаемостями плазматической мембраны клетки для данных ионов.

Все факторы, перечисленные выше, составляют так называемую ионную компоненту МПП (Мембранный потенциал покоя). Поскольку, ни калиевый, ни натриевый равновесные потенциалы не равны МПП. клетка должна поглощать Na + и терять К + . Постоянство концентраций этих ионов в клетке поддерживается за счет работы Na + К + -АТФазы.

Однако роль этого ионного насоса не ограничивается поддержа­нием градиентов натрия и калия. Известно, что натриевый насос электрогенен и при его функционировании возникает чистый поток положительных зарядов из клетки во внеклеточную жидкость, обу­славливающий увеличение электроотрицательности цитоплазмы по отношению к среде. Электрогенность натриевого насоса была выяв­лена в опытах на гигантских нейронах моллюска. Электрофорети-ческая инъекция ионов Na + в тело одиночного нейрона вызывала гиперполяризацию мембраны, во время которой МПП был значи­тельно ниже величины калиевого равновесного потенциала. Указан­ная гиперполяризация ослаблялась при снижении температур рас­твора, в котором находилась клетка, и подавлялась специфическим ингибитором Na + , К + -АТФазы уабаином.

Из сказанного следует, что МПП может быть разделен на две компоненты - «ионную» и «метаболическую». Первая компонента зависит от концентрационных градиентов ионов и мембранных проницаемостей для них. Вторая, «метаболическая», обусловлена актив­ным транспортом натрия и калия и оказывает двоякое влияние на МПП. С одной стороны, натриевый насос поддерживает концент­рационные градиенты между цитоплазмой и внешней средой. С другой, будучи электрогенным, натриевый насос оказывает прямое влияние на МПП. Вклад его в величину МПП зависит от плотности «насосного» тока (ток на единицу плошади поверхности мембраны клетки) и сопротивления мембраны.

Однако пассивные механизмы не позволяют понять причины сохранения ионной асимметрии на протяжении всей жизни клетки, кроме того, было замечено, что многие вещества проходят через мембрану против градиента концентрации. Естественно, что этот процесс протекает с затратой энергии. Поэтому, такой механизм переноса называется активным. Активный перенос всегда является избирательным. Он был обнаружен в 1955 году Ходжкиным и названкалий-натриевый насос.

Он обеспечивает "откачивание" ионов натрия из клетки и транспорт ионов калия внутрь ее. Осуществляется это с помощью белка-переносчика. Он захватывает в цитоплазме клетки 3 иона натрия и переносят их наружу, где ионы отщепляются и таким образом выводятся из клетки. На наружной поверхности к переносчику присоединяются 2 иона калия, которые закачиваются внутрь клетки.

Работа эта осуществляется с затратой энергии, источником которой является аденозинтрифосфат (АТФ). Распад АТФ происходит под действием фермента АТФ-азы, при этом выделяется энергия, которая используется в работе калий-натриевого насоса. При сдвигах трансмембранной концентрации ионов, активность К-Na-насоса может автоматически регулироваться. В регуляции особое значение имеет аденозинтрифосфатаза, которая активируется при увеличении концентрации натрия в цитоплазме и калия в межклеточной жидкости.

Работа насоса приводит к следующим результатам:

1) поддерживает высокую концентрацию ионов К + внутри клетки, обеспечивая тем самым постоянство величины потенциала покоя,

2) поддерживает низкую концентрацию ионов натрия внутри клетки,

3) поддерживая концентрационный градиент натрия, натрий-калиевый насос способствует сопряженному транспорту аминокислот и глюкозы через клеточную мембрану.

Таким образом ионная асимметрия обусловлена как избирательной проницаемостью мембраны в состоянии покоя, так и деятельностью К-Na-насоса. Эту величину можно рассчитать по формуле Гольдмана:

RTP K [K] B н +P N а B н +P Cl H

Е м = ______ ln ________________________________________________ , где

NFP K [K] B н +P N а B н +P Cl H

P K , P N а, P Cl – проницаемость для ионов К,Nа,Cl,

вн, н – их внутренняя и наружная концентрация.

Изменение мембранного потенциала. Потенциал действия или токи действия

Биотоки наблюдаются не только при покое, но и при возбуждении тканей. Электрические процессы всегда сопровождают возбуждение и являются лучшим его критерием.

Впервые наличие биотоков при возбуждении было обнаружено Маттеучи в 1837 году в следующем опыте. Он брал 2 н.-м. препарата и нерв одного из них накладывал на мышцу другого, нерв которого раздражался электрическим током. при включении Эл. тока сокращалась не только раздражаемая мышца, но и другая. Этот факт объясняется тем, что при сокращении первой мышцы в ней возникают биотоки, сила которых достаточна для того, чтобы возбудить лежащий на ней нерв второго препарата и вызвать сокращение иннервируемой мышцы.

В 1954 году Мюллер и Кёлликер установили, что электрические явления сопровождают и деятельность сердца. Они накладывали на сокращающееся сердце теплокровного животного нерв н.-м. препарата икроножной мышцы лягушки и наблюдали, что при каждом сокращении сердца одновременно сокращается и мышца. Биотоки сердца возбуждают нерв, а он – мышцу.

В дальнейшем биотоки были обнаружены во всех возбудимых тканях при их деятельности. В 1800 году Герман назвал токи, сопровождающие процесс возбуждения, потенциалами или токами действия. Этот термин применяется и в наши дни, а токи действия считаются лучшим показателем возбуждения тканей.

Токи действия можно зарегистрировать.

Это делают микроэлектродным способом. Один электрод располагают на поверхности, а микроэлектрод вводят в клетку. При этом регистрация идет на фоне токов покоя или мембранного потенциала. Сразу после введения электрода внутрь клетки осциллограф регистрирует наличие потенциала покоя, который равен – 70 мв. Если после этого раздражать клетку надпороговым раздражителем, действующим рядом с внеклеточным электродом, то клетка возбуждается и осциллограф записывает кривую однофазного тока действия, которая отражает быстрое колебание мембранного потенциала. В момент возбуждения кривая круто поднимается вверх, доходит до 0 и затем превышает его. После этого возбуждение покидает точку воздействия и заряд мембраны восстанавливается до -70мв.

При этом регистрируется однофазный потенциал действия (рис.8). В кривой однофазного тока действия выделяют несколько частей. Восходящую часть кривой называютфазой деполяризации , поскольку она отражает процесс уменьшения и исчезновения исходной поляризации мембраны. Эта фаза протекает наиболее быстро. Вершину тока действия называютспайком. Нисходящее колено характеризует восстановление исходной поляризации мембраны и называютфазой реполяризации . В этой фазе различают 2 части –быстрой реполяризации с крутым падением кривой имедленной, когда восстановление мембранного потенциала замедляется, Эту часть нередко называютследовым отрицательным потенциалом . После него в некоторых тканях (безмякотных нервах) наблюдаетсяследовой положительный потенциал , увеличение заряда мембраны, еегиперполяризация.

Ионный механизм потенциала действия впервые попытался объяснить Ю. Берншетейн в 1912 году с позиции «теории прорыва ионного барьера». Согласно этой гипотезе, при действии раздражителя мембрана теряет свою избирательность и все ионы получают возможность двигаться по своим концентрационным градиентам: Na– в клетку, К – на поверхность. Их концентрация над и под мембраной выравнивается и мембранный потенциал в возбужденном участке исчезает. Это длиться очень короткое время, после чего мембранный потенциал полностью восстанавливается. По Бернштейну амплитуда токов действия равна величине мембранного потенциала.

Эта теория была распространена до микроэлектродных исследований Ходжкина и Катца (1949). В своих опытах на гигантских нервных волокнах кальмара ими было установлено, что токи действия имеют большую величину, чем токи покоя: МП при возбуждении не просто падает до 0, а изменяется на противоположный - наружная поверхность заряжается отрицательно по отношению к внутренней.

Ходжкиным, Хаксли, Катц (1952) впервые выдвинули теорию об индивидуальном участии различных ионов в формировании потенциала действия (рис.9).

Согласно этой теории потенциал действия имеет несколько фаз:

1) фаза градуальной деполяризации – это время от момента нанесения раздражителя до достижения уровня критической деполяризации, после чего развивается высокоамплитудная часть потенциала действия. Градуальная деполяризация характеризуется постепенным раскрытием натриевых каналов, медленным вхождением ионов натрия в клетку по концентрационному градиенту и постепенным снижением МП. Длительность первой фазы для нервной ткани - 0,00004 сек, для скелетной мышцы – 0,0001 сек. При снижении мембранного потенциала до Е кр, происходит открытие всех натриевых каналов и развивается следующая фаза.

2) фаза быстрой деполяризации - это время развития пика от начала его возникновения до вершины. Открываются все натриевые каналы, и ионы натрия лавинообразно поступают внутрь клетки по концентрационному и электрохимическому градиенту. В эту фазу смещение мембранного потенциала протекает стремительно, он снижается и приобретает положительный заряд, достигающий величины +30-+40 мВ. Это называетсяпиком деполяризации илиспайком. Амплитуда потенциала действия равна 100-120 мВ.

Длительность этой фазы для нерва равна приблизительно 0,001-0,002 сек, для мышцы – приблизительно 0,005 сек.

3) фаза реполяризации – определяется временем снижения мембранной поляризации до исходного уровня. Начинается в момент достижения заряда мембраны +30-+40мВ. В этот момент инактивируются натриевые каналы и активируются калиевые каналы. Проницаемость для ионов калия увеличивается и он начинает выходить из клетки. Этот период имеет два отрезка времени – относительно быстрое снижение поляризации мембраны(быстрой реполяризации) , и последующее более медленное снижение поляризации клетки (медленная реполяризация) , которое называетсяотрицательный следовой потенциал. Медленное снижение мембранной поляризации обусловлено включением в работу активных механизмов переноса ионов натрия и калия (калий-натриевый насос). Длительность третьей фазы для нерва равна 0,02-0,03 сек, для мышцы - приблизительно 0,05-0,1 сек.

4) фаза гиперполяризации (положительный следовой потенциал) – снижение поляризации клеточной мембраны ниже исходной величины. Гиперполяризация характерна для немиелинизированных нервных волокон. Ее связывают с временно увеличенной проницаемостью для ионов К + . Длительность следовой электроположительности для нерва приблизительно равна 0,1 сек, для мышцы – 0,25 сек и больше.

После гиперполяризации МП полностью нормализуется до исходных -70мВ. Подобные ПД наблюдаются в любой возбудимой системе, протекая с различной скоростью и занимая различное время. ПД развивается по закону «все или ничего».

Токи действия служат одним из самых объективных критериев возбуждения, поэтому их регистрация используется для оценки работы многих органов: ЭКГ, ЭЭГ, электромиография и т.д. Токи действия нашли практическое применение в протезировании – в создании управляемых протезов.

Механизм работы натрий-калиевого насоса. НКН за один цикл переносит 3 иона Na+ из клетки и 2 иона K+ в клетку. Это происходит из-за того , что молекула интегрального белка может находиться в 2 положениях. Молекула белка, образующая канал, имеет активный участок, который связывает либо Na+, либо K+. В положении (конформации) 1 она обращена внутрь клетки и может присоединять Na+. Активируется фермент АТФаза, расщипляющая АТФ до АДФ. Вследствие этого молекула превращается в конформацию 2. В положении 2 она обращена вне клетки и может присоединять K+. Затем конформация вновь меняет и цикл повторяется.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы обладают следующими свойствами:
пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:
пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма, который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня ПП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда ;
потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение ПП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).


  1. Механизм генерации потенциала действия
Нейрон в отличие от других клеток способен возбуждаться. Под возбуждением нейрона понимают генерацию нейроном потенциала действия - волна возбуждения,передающаяся по мембране живой клетки в процессе передачи нервного импульса.

При прохождении электрического тока в направлении поляризации ПП возрастает – это явление гиперполяризации. При прохождении тока в обратном направлении ПП снижается – деполяризация.

ПП можно снижать только до определённого момента. После того как ПП опускается до 0, происходит смена полярности, в клетке возникает распространяющийся электрический процесс – потенциал действия (ПД).

В мембране есть много каналов, пропускающих ионы. Существуют транспортные механизмы: комплексоны и т.д. Но есть канал, работающие против электрического градиента – энергозатратные каналы.

При определённом уровне открываются натриевые каналы – критический уровень деполяризации. Он на 10-15% ниже уровня поляризации покоя. Это потенциалзависимые каналы. Они, в отличие от калиевых каналов, открытых всегда, работают только после критического уровня деполяризации- величина мембранного потенциала, при достижении которого возникает ПД.
Как только канал открывается, в цитоплазму нейрона устремляются из межклеточной среды ионы натрия , которых там примерно в 50 раз больше, чем в цитоплазме. Такое движение ионов является следствием простого физического закона: ионы движутся по концентрационному градиенту. Таким образом , в нейрон поступают ионы натрия, они заряжены положительно. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который будет смещать потенциал мембраны в сторону деполяризации, т. е. уменьшать поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется. Потенциал на мембране будет увеличиваться, открывая все большее количество натриевых каналов. Внутри оказывается очень много катионов K+ и Na+. Но этот потенциал будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют натриевым равновесным потенциалом. Вспомним, что в покое мембрана имела потенциал -70 мВ, тогда абсолютная амплитуда потенциала составит величину около 125 мВ.

После достижения натриевого равновесия натриевые каналы закрываются белковой пробкой. Это так называемая «натриевая инактивация». Мембрана становится непроницаемой для натриевых ионов. Для того чтобы потенциал мембраны вернулся к исходному состоянию-состоянию покоя , необходимо, чтобы из клетки выходил ток положительных частиц. Здесь на помощь приходят энергозатратные каналы – натриево-калиевый насос. Нужна дополнительная энергия, которая получается из расщепления 3-фосфата (АТФ) до 2-фосфата (АДФ), Эта система возвращает клетку к исходному уровню поляризации мембраны. Эти каналы работают всё время. Энергозатратные каналы – потенциалнезависимые. В результате этих процессов мембрана нейрона возвращается к состоянию покоя (-70 мВ) и нейрон готовится к следующему акту возбуждения.

Правило «всё или ничего»: как бы не воздействовать на клетку, до достижения уровня деполяризации она не сгенерирует ПД. Если клетка создаёт ПД, то только соответствующий ПП (ПД прямопропорционально зависит от ПП). Это правило работает только снаружи клетки.

Следовые процессы: через определённые время после генерации ПД что бы ни делать с клеткой, она не сможет сгенерировать новый ПД, так ещё не восстановился исходный уровень деполяризации. Это рефрактерный период- клетка не реагирует ни на что.

Натриевый насос («На́триевый насо́с»,)

«натриево-калиевый насос» (биохимический), мембранный механизм, поддерживающий определённое соотношение ионов Na + и К + в клетке путём их активного транспорта против электрохимического и концентрационного градиентов. Клетки большинства тканей содержат больше ионов К + , чем Na + , в то время как в омывающей их жидкости (кровь, лимфа, межклеточная жидкость) значительно выше концентрация Na + . Определённое количество ионов постоянно входит в клетки и покидает их. Пассивный транспорт катионов (движение ионов через мембрану по системе специальных каналов вдоль электрохимического и концентрационного градиентов) в норме компенсируется активным транспортом ионов (См. Активный транспорт ионов). Функционирование «Н. н.» связано с переносом метаболитов в клетки, а для нервных и мышечных волокон также с механизмом возбуждения (См. Возбуждение) (см. Мембранная теория возбуждения). Активный перенос Na + из клетки сопряжён с транспортом К + в обратном направлении и осуществляется особой ферментной системой - транспортной Na, К, - стимулируемой аденозинтрифосфатазой, локализованной в клеточной мембране. Последняя, гидролизуя аденозинтрифосфорную кислоту (АТФ), высвобождает энергию, которая и затрачивается на активный перенос катионов. Работа «Н. н.» в целом зависит от уровня метаболизма клетки. См. также Биоэлектрические потенциалы , Проницаемость биологических мембран .

Р. Н. Глебов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Натриевый насос" в других словарях:

    натриевый насос первого контура ядерного реактора с натриевым теплоносителем - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN primary sodium pump … Справочник технического переводчика

    Важнейшие парные органы выделения позвоночных животных и человека, участвующие в водно солевом Гомеостазе, т. е. в поддержании постоянства концентрации осмотически активных веществ в жидкостях внутренней среды (см. Осморегуляция),… …

    - (renes) парный экскреторный и инкреторный орган, выполняющий посредством функции мочеобразования регуляцию химического гомеостаза организма. АНАТОМО ФИЗИОЛОГИЧЕСКИЙ ОЧЕРК Почки расположены в забрюшинном пространстве (Забрюшинное пространство) на… … Медицинская энциклопедия

    - (биологическое) передвижение в живых системах ионов (натрия, калия, магния, кальция и др.) через различные клеточные мембраны (например, нервных и мышечных клеток, эритроцитов и др.) против любого из градиентов концентрационного,… … Большая советская энциклопедия

    Электрические потенциалы, возникающие в тканях и отдельных клетках человека, животных и растений, важнейшие компоненты процессов возбуждения (См. Возбуждение) и торможения (См. Торможение). Исследование Б. п. имеет большое значение для… … Большая советская энциклопедия

    - (биологическое) реакция живой клетки на раздражение, выработанная в процессе эволюции. При В. живая система переходит из состояния относительного физиологического покоя к деятельности (например, сокращение мышечного волокна, выделение… … Большая советская энциклопедия

    - (биологическая) снижение существующей в покое разности потенциалов (так называемого потенциала покоя) между внутренней и наружной сторонами мембраны живой клетки. В нервных клетках и их отростках, а также в мышечных волокнах Д. один из… … Большая советская энциклопедия

    Общепринятая в физиологии теория возбуждения мышечных и нервных клеток. Основа М. т. в. представление о том, что при раздражении возбудимой клетки в её поверхностной мембране происходит молекулярная перестройка, которая приводит к… … Большая советская энциклопедия

    Укорочение мышцы, в результате которого она производит механическую работу. М. с. обеспечивает способность животных и человека к произвольным движениям. Наиболее важная составная часть мышечной ткани (См. Мышечная ткань) белки (16,5… … Большая советская энциклопедия

    - (франц. polarisation, перво

Натриевый насос - это механизм, который выводит из клетки ионы натрия , входящие в клетку пассивно в направлении концентрационного и электрического градиентов. Существование натриевого насоса доказывается с помощью радиоактивных изотопов ионов натрия . При быстром охлаждении нервных клеток до 0,5 градуса С выход ионов натрия снижается в 10 раз, при возвращении температуры к исходному уровню, выход ионов натрия также возрастает до нормы. Такая температурная зависимость показывает, что выход ионов не может осуществляться за счет диффузии, так как скорость диффузии слабо уменьшается при охлаждении.

Динитрофенол (вещество, блокирующее в клетке метаболические процессы снабжения энергией) также снижает выход инов натрия, что доказывает, что они выводятся из клетки посредством активного транспорта. Активный транспорт ионов натрия из клетки имеет компонент, сопряженный со входом ионов калия в клетку, что позволяет экономить энергию. У внутренней стороны мембраны ион натрия образует с переносчиком Y молекулу NaY, которая диффундирует через мембрану и спонтанно распадается у ее наружной стороны. Молекула Y превращается в молекулу X, которая связывается с ионами калия K+ в наружном растворе. Возникающее в результате этого соединение КX диффундирует через мембрану, распадаясь у ее внутренней стороны на К+ и X. Внутри клетки молекула X преобразуется в молекулу Y с использованием энергии распада АТФ. Сопряженность Х и К+ экономит половину энергии, которая потребовалась бы для несопряженного транспорта ионов натрия Na+. Существование сопряженного Na+ - К+ насоса доказывается путем удаления К+ из наружного раствора. Тогда не может образоваться комплекс КX у наружной стороны мембраны и выход Na+ уменьшается до 30% нормального уровня. Натриевый насос может быть электронейтральным и электрогенным. Обычно комплекс NaY электронейтральный, поэтому в процессе транспорта отсутствует поток электрических зарядов через мембрану, такой электронейтральный натриевый насос не влияет на мембранный потенциал. Кроме того, существуют