Как работает стационарная солнечная батарея. Как работает солнечная батарея: устройство и принцип действия, подробное видео

В последнее время активно развиваются технологии получения альтернативной энергии. Это солнечные батареи (СБ), ветровые станции и ряд иных устройств. Особенно перспективными считаются СБ или так называемые фотоэлектрические панели, ведь с учетом почти вечной жизни солнца такая энергия является неисчерпаемой. Несмотря на их пока что сравнительно высокую стоимость, они обеспечивают получение бесплатной и экологически чистой энергии. Тем не менее, цены на СБ год из года снижаются, что свидетельствует о больших перспективах их повсеместного внедрения.

Устройство солнечных батарей

Солнечная батарея представляет систему полупроводниковых устройств в виде фотоэлектрических преобразователей, которые преобразуют энергию солнца в постоянный электрический ток с применением принципа фотоэффекта.

1 — Контроллер
2 — Батарея
3 — Инвертор
4 — Модуль
5 — Электрооборудование

Солнечная батарея включает в себя следующие элементы:
  • , состоящий из двух слоев материалов с различной проводимостью. К примеру, это может быть поликристаллический или монокристаллический кремний с включением иных химических соединений для создания принципа фотоэффекта p-n перехода. То есть, один материал имеет недостаток электронов, а другой – их избыток.
  • , тончайший слой элемента, который противостоит переходу электронов.
  • . При его подключении к противостоящему слою, запорная зона легко преодолевается электронами. В результате появляется упорядоченное движение зараженных частиц, то есть электрический ток.
  • . Обеспечивает накопление и сохранение энергии.
  • . Производит преобразование постоянного тока, идущего от солнечной батареи, в переменный.
  • . Обеспечивает в системе солнечной батареи создание напряжения необходимого диапазона.

Принцип действия

  • Солнечный свет в виде фотонов света попадает на поверхность солнечной батареи.
  • При столкновении с поверхностью полупроводника фотоны передают энергию электронам полупроводника.
  • Электроны, выбитые из полупроводника вследствие удара, преодолевают защитный слой, имея при себе дополнительную энергию.
  • В результате отрицательные электроны переходят в проводник n из p-проводника, а положительные совершают обратный маневр. Подобному переходу способствуют электрические поля, которые на данный момент имеются в проводниках. Впоследствии они увеличивают разность и силу зарядов.

Если батарея, освещенная солнцем, замкнута на определенную нагрузку с сопротивлением R, то наблюдается появление электрического тока I. Его величина определяется сопротивлением нагрузки, интенсивностью освещения и качеством фотоэлектрического преобразователя. Мощность P, выделяемая в нагрузке определяется формулой P= I*U, где U показывает напряжение на зажимах батареи.

Виды

В зависимости от применяемых материалов солнечные батареи могут быть:
  • Панели из монокристаллических фотоэлектрических элементов. Они эффективны, однако более дороги, КПД составляет 14-16%. У монокристаллических элементов многоугольная форма, вследствие чего всю площадь заполнить трудно;
  • Панели из аморфного кремния. Такие батареи демонстрируют низкий КПД в пределах 6-8%. Но среди кремниевых технологий преобразователей у них наиболее дешевая электроэнергия;
  • Панели из теллурида кадмия выполняются на базе пленочной технологии. Нанесение полупроводникового слоя осуществляется слоем в несколько сотен микрометров. КПД составляет 11%, но в сравнении с кремниевыми батареями ватт мощности обходится дешевле на десятки процентов;
  • Панели на базе полупроводников CIGS, которые состоят из селена, галлия, индия и меди. КПД таких панелей доходит до 15%;
  • Полимерные панели. Это разновидность тонкопленочных батарей, принцип работы которых напоминает фотосинтез растений. Включает слой полимера, защитный слой, гибкую подложку и алюминиевые электроды. КПД 5-6%;
  • Наиболее распространенными вследствие оптимального соотношения КПД и цены являются панели из поликристаллических фотоэлектрических элементов. Их КПД достигает 12-14%.
СБ также можно условно разбить на следующие типы:

  • Тонкопленочные или гибкие (на базе теллурида кадмия, кристаллические и аморфные);
  • Жесткие (из кристаллического кремния, иногда аморфного);
  • Односторонние (поглощают свет одной стороной);
  • Двухсторонние (поглощают свет обеими сторонами).

Особенности

  • Заряд аккумуляторной батареи при слабом солнечном свете уменьшается, отдавая электроприемнику электрическую энергию, то есть идет постоянная работа в режиме зарядки и разряда. Контроль выполняется специальным контроллером.
  • СБ не требуют никаких специальных профилактических работ. Может потребоваться лишь протирание пыли.
  • Панели можно использовать и зимой, однако производительность в этот период уменьшается в полтора-два раза. Чтобы на панелях не накапливается снег, их следует устанавливать под углом 70 градусов на возвышении.
  • Солнечные батареи лучше всего подойдут для автономных систем, в которых много бытовых энергоэффективных электроприборов, не включенных постоянно.

Применение

Солнечные батареи могут применяться практически повсеместно:

  • Электромобили.
  • Портативная электроника.
  • Калькуляторы, фонарики, плееры и так далее, то есть везде, где требуется подзарядки аккумуляторов различной бытовой электроники.
  • Авиация. Так создан самолет Solar Impulse, работающий только на солнечной энергии.
  • Энергообеспечение домов, школ, аэропортов и иных зданий. Солнечные батареи широко используются в субтропических и тропических регионах, где много солнечных дней. В особенности популярны они в странах Средиземноморья.
  • Использование в космосе. СБ ставят на МКС, устанавливают на спутниках, космических и межпланетных аппаратах, а также многое другое.
Достоинства и недостатки
Среди преимуществ можно отметить:
  • Экологичность;
  • Долговечность, фотоэлементы служат несколько десятков лет;
  • Простой принцип работы. Благодаря чему поломок в солнечной батарее практически не бывает;
  • Бесшумность;
  • Возможность постоянной работы;
  • Не нужно топлива;
  • Общедоступность;
  • Возможность изменения мощности системы.
Среди недостатков можно отметить:
  • Низкий КПД. Нужна большая площадь батарей, чтобы обеспечить нужды даже небольшой семьи;
  • Сложность сборки системы и наладки;
  • Достаточно высокая стоимость солнечных батарей, а также низкая окупаемость системы.

Перспективы

Стремление человечества к экологичности и отказу от нефти приведет к внедрению все больших энергосберегающих технологий. Это значит, что солнечные батареи будут использоваться повсеместно. А создание панелей с более высоким КПД позволит:

  • Оборудовать большинство зданий панелями для получения энергии;
  • Монтировать их в автомобили, дороги, роботы и многочисленные иные приборы;
  • Устанавливать их в одежду и даже вживлять в человека. Южнокорейские ученые уже создали подкожную солнечную батарею, которая в 15 раз тоньше волоса. Она обеспечивает бесперебойную работу приборов, которые имплантированы в тело, к примеру, кардиостимулятора.

Получили настолько широкое распространение, что каждый пользователь может заказать комплектующие и самостоятельно своими руками собрать и установить фотоэлектрические панели. Конечно, вопрос цены остаётся актуален, ведь солнечные панели совсем не дешёвый вариант, зато это экологично. А стоимость, с каждым годом становится всё дешевле. Так что каждый, наверняка сталкивался с идеей использования такого источника электричества, но вот принцип работы солнечной батареи знает далеко не каждый.

Видео о том, как работает солнечная батарея

Принцип работы солнечной батареи

Чтобы понять как работает солнечная батарея необходимо разобраться из чего она состоит. Как правило солнечный источник энергии состоит из таких частей:

  • Генератор постоянного тока (она же солнечная панель)
  • Аккумулятор с контролем заряда и инвертором, преобразующим ток в переменный
  • В свою очередь панель состоит из фотоэлектрических преобразователей , которые, говоря простым языком, трансформируют солнечную энергию в электрическую. Чаще всего это поликристаллические или монокристаллические кремниевые батареи. Разница в КПД и технологии производства.

Принцип работы солнечной электростанции заключается в последовательном взаимодействии ряда элементов единой сети. Соединяются элементы в солнечной панели последовательно и параллельно. Делается это для того, чтобы увеличить мощность, напряжение и ток. Плюс, такое соединение обезопасит при выходе из строя одного элемента — остальные детали цепи.

  • Также батареи пронизаны так называемыми диодами. Принцип действия солнечных батарей основывается именно на этих элементах. Такие диоды предохраняют панель во время частичного затемнения. Во время таких затемнений, батарея не прерывает свою работу, но вырабатывает на четверть меньшую мощность. Суть в том, что диоды не дают перегревать солнечные элементы, которые во время затемнения начинают потреблять электричество вместо того, чтобы вырабатывать.
  • Дальше электроэнергия накапливается в аккумуляторах. А после уже отдаётся в систему. Важный момент в том, чтобы количество параллельно и последовательно соединённых элементов в солнечной панели, было расчитано таким образом, чтобы напряжение, которое подведено к аккумуляторам, превышало напряжение самого аккумулятора. Даже с учётом просадки. При этом нагрузочный ток солнечной батареи должен обеспечивать достаточное количество зарядного тока. Этот параметр обязательно учитывается при .
  • Ещё один важный фактор в работе солнечных панелей — полезная мощность. Именно этот показатель отражает экономичность использования для пользователя. Высчитывается такая мощность исходя из напряжения и выходного тока установки. А эти показатели в свою очередь зависят от силы солнечного освещения, которое попадает непосредственно на панель. Кстати, слишком большие температуры для работы солнечных батарей не полезны. Ведь при интенсивном нагревании солнцем, у электровырабатывающих элементов падает так называемая электродвижущая сила. Тем не менее, чем ярче освещения от солнца, тем больший ток вырабатывается.

Теперь немного формул о принципе работы солнечных батарей.

Как работает солнечная панель? К примеру, солнечная батарея замкнута на нагрузку с измерянным сопротивлением (Rн) . В цепи, следовательно, появляется ток (I) . При этом показатель I формируется в прямой зависимости от качества преобразователя в цепи, силой солнечного освещения и сопротивления. Далее разберём . — это напряжение, которое создаётся на зажимах солнечных батарей. В итоге зная эти показатели, мы можем высчитать мощность, которая появляется в нагрузке на установку: Pн = IнUн

Однако оптимальное сопротивление у каждой панели своё и зависит оно от уровня КПД.

  • При пасмурной погоде заряд аккумуляторов из-за меньшей выработки панелями электричества, естественно снижается. Во время такого процесса, электроэнергию принимает приёмник. Другими словами, аккумуляторы работают всегда либо на заряд либо на разряд. Этот механизм взаимодействия управляется контроллером.
  • Чаще всего работа аккумуляторов в цепи устроена таким образом, что они очень быстро заряжаются до 80-90%, а потом долго набирают остаток заряда. На сегодняшний день самые эффективные для использования в системах альтернативного снабжения электроэнергией батареи — гелевые. Такие батареи не требуют обслуживания и неприхотливы в условиях работы. При этом срок службы обычно достигает 10 лет.

Контроллер, резистор и инвертор

  • Контроллер необходим для подключения аккумуляторов в сеть. Он контролирует заряд.
  • Резистор поглощает избыточную мощность выработки электроэнергии.
  • Инвертор необходим для нормального снабжения электросети, кроме тех случаев, когда необходимо запитать приёмники, которые работают от постоянного напряжения, а не от переменного.

Конечно, разобраться во всех тонкостях работы сложно. Но надеемся, Вы найдёте ответы на страничках нашего сайта. Более наглядно работу солнечных элементов можно понять из графических схем.

Ежесекундно огромное количество солнечной энергии поступает на поверхность нашей планеты, давая жизнь всему живому. Достойной задачей для пытливых умов является решение, которое заставило бы ее служить нуждам людей. И это уже пытаются воплотить в жизнь те, кто изобрел конструкцию солнечной батареи, способной преобразовывать солнечный свет в электрическую энергию.

Понять, как работает солнечная батарея, легче на примере конструкции, в основе которой лежит монокристаллический кремний.

Два слоя кремния с разными физическими свойствами образуют тонкую пластину. Внутренний слой – монокристаллический чистый кремний с р-типом проводимости, который покрыт снаружи слоем кремния «загрязненного». Это может быть, к примеру, примесь фосфора. Он обладает проводимостью n-типа. Тыльная сторона пластины покрыта сплошным металлическим слоем.

В каркасе фотоэлементы закреплены таким образом, чтобы можно было заменить, вышедший из строя. Вся конструкция покрыта закаленным стеклом или пластиком, которые ее защищают от негативного воздействия внешних факторов.

Принцип работы солнечной батареи

В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.

При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.

Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.

Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).

Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.

Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.

Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.

Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.

И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.

Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность. Затем важно, каким запасом энергии они обладают.

Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.

Виды солнечных батарей

Все солнечные панели кажутся на первый взгляд одинаковыми – покрытые стеклом темные элементы с металлическими полосками, проводящими ток, помещенными в алюминиевую раму.

Но, солнечные батареи классифицируют по мощности вырабатываемого ею электричества, зависит которая от конструкции и площади панели (они могут быть миниатюрными пластинками с мощностью до десяти ватт и широкими «листами» на двести и более ватт).

Кроме этого, различаются они по типу образующих их фотоэлементов: фотохимические, аморфные, органические, а также созданные на основе кремниевых полупроводников, у которых коэффициент фотоэлектрического преобразования в несколько раз больший. Следовательно, больше и мощность (особенно во время солнечной погоды). Конкурентом последних может быть солнечная батарея на основе арсенида галлия. То есть, на рынке сегодня встретить можно пять типов солнечных батарей.

Они отличаются материалами, используемыми для их изготовления:

1. Панели из поликристаллических фотоэлектрических элементов, с характерным синим цветом солнечной панели, кристаллической структурой и КПД, равным 12-14%.

Поликристаллическая панель

2. Панели из монокристаллических элементов – более дорогие, но и более эффективные (КПД – до 16%).

3. Панели солнечные из аморфного кремния, у которых КПД самый низкий – 6-8%, но вырабатывают они наиболее дешевую энергию.

4. Панели из теллурида кадмия, создаваемые по пленочным технологиям (КПД – 11%).

Панель, в основе которой лежит теллурид кадмия

5. Наконец, солнечные панели на основе полупроводника CIGS, состоящего из селена, индия, меди, галлия. Технологии их получения тоже пленочные, но КПД доходит до пятнадцати процентов.

Кроме этого, панели солнечные могут быть гибкими и портативными.

Очень удобными являются гибкие панели, которые легко сворачиваются в рулон, словно обычная бумага. Хотя стоимость их выше, чем твердотельных аналогов, они на рынке заняли свою нишу. В основном они пользуются спросом у туристов и путешественников, которым в условиях отсутствия электрификации необходимо заряжать мобильные гаджеты. Главным производителем гибких батарей, работающих от солнечной энергии, является компания Sun Charger, которая, к слову, недавно обновила свой модельный ряд моделями 34 Вт и 9Вт.

Первая модель подходит для питания планшетов, сотовых телефонов, видеокамер, цифровых фотоаппаратов, GPS, гелевых аккумуляторов 6 и 12 вольт, т.е. она может в условиях похода обеспечить потребности нескольких человек.

SunCharger SC-9/14 — батарея в сложенном виде

Она же — в раскрытом виде

Особенности батареи: компактная складывающая конструкция, работающая в диапазоне температур от -50 до +70 градусов, вес которой всего 420 граммов, снабжена антибликовым покрытием, встроенным светодиодом, люверсами для крепления. Выходной разъем круглый (5.5 мм / 2.1 мм.).

Характеристики электрические: рабочее выходное напряжение 13,5 В (стандартное 12В), без нагрузки – 19В; рабочий выходной ток – 0,65 А; габариты в сложенном и развернутом виде — 20.5х15х3 см и 50х41.5х0.4 см; мощность выходная – 8,6 Вт.

Вторая модель SunCharger SC-34/18 на сегодняшний день является в линейке гибких солнечных батарей самой мощной. Разработана она специально для универсальных накопителей (ноутбуков), имеющих на входе зарядки, как правило, 17-19 вольт. Максимальная мощность – 18В. К накопителям она подключается напрямую, что обеспечивает идеальное согласование. Понятно, что для менее «прожорливых» накопителей она также подходит, в том числе для двенадцати вольтовых свинцовых аккумуляторов, используемых в автомобилях.

Солнечная батарея выдает 18 В в точке своей максимальной мощности и напрямую подключается к этим накопителям. Таким образом, она «идеально» с ними согласована.

Естественно, эта батарея подходит и для зарядки менее прожорливых потребителей. Как известно, мощности мало не бывает. А также спокойно заряжает 12 В свинцовые аккумуляторы, в том числе, и автомобильные (через несколько часов зарядки уже можно завести машину). Толщина ее 4 см (т.е. стала чуть больше), но получилась батарея даже немного компактнее, чем обычные батареи на 12 В.

Достигнуто это за счет более тонкой ткани, используемой в ее производстве и ламинированных фотоэлементов большей площади.

Эта же батарея в раскрытом виде

Помимо особенностей, характерных для предыдущей модели, здесь имеются на выходе помимо круглого разъема, еще «мама» и «папа».

Электрические характеристики: мощность выходная, как понятно из маркировки, 34 Вт; рабочий выходной ток – 1.9 А; габариты 40х18х4 см (в сложенном виде) и 40х18х4 см (в раскрытом). Напряжение на выходе – 18 В и 26 В (без нагрузки). Вес, конечно, намного больше – 1,7 кг.

Портативная солнечная батарея – специально для туристов

У каждого в наше время есть электронные гаджеты. Не суть, что у кого-то их меньше, а кого-то больше. Все их необходимо заряжать, а для этого нужны зарядные устройства. Но, особенно остро этот вопрос касается тех, кто попадает в места, где отсутствует электропитание. Единственным выходов являются солнечные батареи. Но, цены на них остаются высокими, а выбор — небольшим. Оптимальным вариантом, как принято считать, является продукция компании Goal Zero (хотя есть и российская продукция, и китайская – как всегда вызывающая сомнении).

Но, оказалось, что не все то плохо, что сделано в Китае или Корее. Особенно порадовала солнечная батарея компания YOLK из Чикаго, которая начала производство компактной солнечной батареи Solar Paper – самой тонкой и легкой. Ее вес всего 120 граммов. Но есть и другие преимущества – модульная конструкция, позволяющая наращивать мощность. Солнечная батарея похожа на пластиковую коробку, по размерам напоминающую Ipad, только тоньше в два раза. На ее лицевой стороне размещена солнечная панель. Есть на корпусе выход для ноутбука и порты USB и для подключения других солнечных панелей, а также фонарик. Внутри этой чудо коробки – аккумуляторы и плата управления. Зарядить девайс можно от розетки, причем, одновременно это могут быть телефон и два ноутбука. Конечно, заряжается устройство и от солнца. Как только на него попадает свет, загорается индикатор. В походных условиях солнечная панель просто незаменима: с успехом заряжает все нужные устройства – телефоны быстрее, ноутбуки.

Портативные солнечные батареи отличаются компактными размерами: они выпускаются даже в виде брелков, прикрепить которые можно к чему угодно. Разрабатывались они для того, чтобы можно было их взять на рыбалку, в поход и пр. Обязательно у них имеется фонарик, чтобы ночью можно было осветить дорогу, палатку и т.д., крепления, позволяющие легко их разместить на рюкзаках, байдарках, палатках. Очень важно, чтобы в таком устройстве был встроенный аккумулятор, позволяющий заряжать девайсы и в ночное время.

Ученые работают над тем, чтобы увеличить коэффициент полезного действия, но пока лидируют по этому показателю солнечные панели из монокристаллических элементов. Состоящие из нескольких слоев — монокристаллические панели, устроены так, что один из слоев поглощает энергию зеленого цвета, другой – красного, третий – синего. Но, стоимость таких панелей очень высокая.

Солнечная батарея состоит, как известно, из нескольких обязательных частей. Основой основ у нее, подобно двигателю у машины или сердцу у человека, является солнечная панель – прозрачный прямоугольный короб с темными квадратиками тонко нарезанного кремния внутри. Кремний, используемый в производстве, а точнее его оксид (соединение с кислородом) – основной элемент производства солнечных батарей.

Технологии, лежащие в основе производства солнечных батарей, все время совершенствуются и состоят из нескольких этапов.

  • На первом этапе подготавливают сырье: очищают кварцевый песок, прокаливая его с коксом. В результате он освобождается от кислорода, превращаясь в куски чистого кремния, напоминающие чем-то уголь. Затем, из него выращивают кристаллы – основу солнечных панелей, упорядочив структуру кремния. Для этого чистый кремний опускают в тигель, нагревают до высокой температуры, добавляя в расплавленную лаву затравку. Можно сравнить ее с образцом будущего кристалла, вокруг которого, слой за слоем нарастает кремний упорядоченной структуры. После нескольких часов роста получается кристалл монокремния (или поликристаллический кремний, процесс получения которого более затратный, что сказывается на цене солнечных батарей из него), напоминающий большую сосульку. Затем заготовку цилиндрическую превращают в параллелепипед. После этого заготовку режут на пластины толщиной 100-200 микрон (толщина трех человеческих волос), тестируют их, сортируют и направляют на следующую стадию обработки.
  • На втором этапе пластина паяют в секции, их которых на стекле формируют блоки, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции обычно состоят из 9-10 солнечных элементов, блоки – из 4-6 секций.
  • Третий этап з аключается в ламинировании спаянных в блоки пластин этиленвинилацетатной пленкой, а затем защитным покрытием, который осуществляется с помощью компьютера, который следит за давлением, вакуумом и температурой.
  • Четвертый этап заключительный . Во время него монтируется соединительная коробка и алюминиевая рама. Вновь проводят тестирование, во время которого измеряют показатели напряжение холостого хода, ток короткого замыкания, напряжение и ток точки максимальной емкости.

Лидерами среди предприятий, производящих солнечные батареи, являются страны: Китай (компании Trina Solar, Yingli, Suntech), Япония (Sharp Solar) и США (First Solar), которая не только их производит, но также участвует в проектировании солнечных станций и их строительстве. Мощнейшая в мире СЭС Агуа-Калиенте в Аризоне – дело рук этой компании. Строительством крупнейшей СЭС «Перово» в Украине занималась компания Австрии (Activ Solar).

Сколько стоит солнечная батарея

Продажа солнечных батарей – дело выгодное и перспективное. Объем продаж увеличивается ежегодно. На первом месте по продажам – китайские производители, продукция которым отличается низкой стоимостью. Такая ситуация привела к банкротству крупных немецких брендов, стоят которые вдвое дороже китайских солнечных батарей.

Стоимость солнечных батарей зависит от производителя и мощности, и имеет огромный разброс – от 1800 грн. до 9000 грн. (для Украины), от 5 тыс. рублей до 30 тысяч (для России). Стоимость этих батарей SunCharger SC- 9/14 и SunCharger SC-34/18 тоже высокая (надо же платить за отличные характеристики). Она составляет соответственно 6100 и 20700 рублей . Но, в сравнении с гибкой батареей фирмы AcmePower 32 Вт, цена за которую равна 27 тысяч рублей , эта батарея гораздо дешевле.


Кто желает сэкономить, могут приобрести солнечные кристаллические складные батареи по цене в 2,5 раза меньшей.

Выводы

Фантастические идеи постепенно становятся реальностью. Вспомним хотя бы микрокалькулятор на фотоэлементах, казавшийся когда-то диковинкой, позволявшей годами не менять батарейку. Изобретение последних лет – мобильник со встроенной солнечной панелью, автомобили и самолеты, передвигающиеся благодаря, все той же, энергии Солнца. Солнечные батареи в будущем, непременно станут основным источником энергии, «вылечив», наконец, все гаджеты от «розеткозависимости» и подарив человечеству дешевую энергию.

Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.


Принцип работы

Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.


Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.


Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.


Существующие разновидности

Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.


Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.


В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.


Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).


Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).


На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.


А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.


Крупнейшие производители

Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.


Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. , которая находится в штате Аризона, США – дело рук инженеров First Solar.

Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.


Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Солнечный свет не только делает возможной жизнь на Земле, он может со временем также стать и поставщиком большого количества электроэнергии, без которой немыслима современная цивилизация. Использование солнечного света может быть не прямым, а в виде подвода энергии к турбинам.

В этом случае комплект зеркал фокусирует солнечную энергию на теплообменник, который испаряет воду или любую другую жидкость, вырабатывая пар для привода обычной турбины, соединенной с генератором. Однако возможно и прямое преобразование солнечного света в электроэнергию, например, при помощи кремниевых солнечных элементов.

Типичный солнечный элемент состоит из шести слоев. Основание (база) одновременно выполняет роль отрицательного полюса элемента; отражающий слой удерживает свет внутри рабочей части элемента, увеличивая его электрическую эффективность; два слоя обогащенного кремния (N-типа и Р-типа) образуют ядро солнечного элемента. Кремний N-типа имеет свободные отрицательные заряды, а кремний Р-типа - несвязанные положительные заряды. При отсутствии освещения эти заряды скапливаются в зоне контакта слоев; когда на элемент падает солнечный свет, заряды расходятся в стороны. Такое перемещение зарядов создает постоянный ток, если солнечный элемент является частью замкнутой цепи. Сверху кремний защищен прозрачной пленкой, на которой размещен металлический контакт положительного полюса.

Как работает солнечный элемент

Солнечный свет, падающий на элемент солнечной батареи, разделяет положительные и отрицательные заряды, которые аккумулируются в зоне контакта между пластинками кремния Р-типа и N-типа. Это разделение создает напряжение, под действием которого при включении элемента в замкнутую цепь в ней начинает течь электрический ток

Секционные солнечные батареи

Солнечные батареи (рисунок над текстом) вырабатывают постоянный ток, который может быть преобразован на электростанции в переменный. Избыточная электроэнергия, выработанная солнечными элементами, может быть запасена в аккумуляторных батареях для последующего использования.

Солнечные батареи в космосе

Для большинства космических спутников солнечные батареи являются основным источником энергии. Эти батареи (рисунок справа) отличаются от тех, что используются на Земле (рисунок слева). Если батареи, установленные вблизи земной поверхности, нуждаются в защите от дождя и пыли, то те, что функционируют в космосе, должны быть защищены от жесткого космического излучения.

Солнечная теплоэлектростанция

Солнечный свет может снабжать теплотой паротурбинную установку, приводящую во вращение генератор. Комплект зеркал фокусирует солнечный свет на башню-концентратор. Результирующий световой пучок настолько интенсивен, что может превращать натрий в пар. Пары натрия используются для превращения воды в пар, который затем приводит во вращение турбину.