Оптоэлектронные полупроводниковые приборы светоизлучающий диод оптопары. Оптоэлектронные приборы: описание, классификация, применение и виды

Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.

Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.

Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:

полной гальванической развязкой «вход – выход» (сопротивление изоляции превышает 10 12 – 10 14 Ом);

абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы – фотоны);

однонаправленностью потока информации, которая связана с особенностями распространения света;

широкополосностью из-за высокой частоты оптических колебаний,

достаточным быстродействием (единицы наносекунд);

высоким пробивным напряжением (десятки киловольт);

малым уровнем шумов;

хорошей механической прочностью.

По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).

В оптронных приборах применяют полупроводниковые источники излучения – светоизлучающие диоды, изготовляемые из материалов соединений группы А III B V , среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 – 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.

Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.

Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p -n -переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.

Основные характеристики светоизлучающих диодов видимого диапазона приведены в табл. 32, а инфракрасного диапазона – в табл. 33.

Таблица 32 Основные характеристики светоизлучающих диодов видимого диапазона



Таблица 33. Основные характеристики светоизлучающих диодов инфракрасного диапазона

Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды – полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала 100 – 300 мкм), оптоизоляторы (до 1 м) и волоконно-оптические линии связи – ВОЛС (до десятков километров).

К фотоприемникам, используемым в оптронных приборах, предъявляют требования по согласованию спектральных характеристик с излучателем, минимуму потерь при преобразовании светового сигнала в электрический, фоточувствительности, быстродействию, размерам фоточувствительной площадки, надежности и уровню шумов.

Для оптронов наиболее перспективны фотоприемники с внутренним фотоэффектом, когда взаимодействие фотонов с электронами внутри материалов с определенными физическими свойствами приводит к переходам электронов в объеме кристаллической решетки этих материалов.

Внутренний фотоэффект проявляется двояко: в изменении сопротивления фотоприемника под действием света (фоторезисторы) либо в появлении фото-эдс на границе раздела двух материалов – полупроводник-полупроводник, металл-полупроводник (вентильные фотоэлементы, фотодиоды, фототранзисторы).

Фотоприемники с внутренним фотоэффектом подразделяют на фотодиоды (с p -n -переходом, МДП-структурой, барьером Шоттки), фоторезисторы, фотоприемники с внутренним усилением (фототранзисторы, составные фототранзисторы, фототиристоры, полевые фототранзисторы).

Фотодиоды выполняют на основе кремния и германия. Максимальная спектральная чувствительность кремния 0,8 мкм, а германия – до 1,8 мкм. Они работают при обратном смещении на p -n -переходе, что позволяет повысить их быстродействие, стабильность и линейность характеристик.

Наиболее часто в качестве фотоприемников оптоэлектронных приборов различной сложности применяют фотодиоды p-i -n -структуры, где i – обедненная область высокого электрического поля. Меняя толщину этой области, можно получить хорошие характеристики по быстродействию и чувствительности за счет малой емкости и времени пролета носителей.

Повышенными чувствительностью и быстродействием обладают лавинные фотодиоды, использующие усиление фототока при умножении носителей заряда. Однако у этих фотодиодов недостаточно стабильны параметры в диапазоне температур и требуются источники питания высокого напряжения. Перспективны для использования в определенных диапазонах длин волн фотодиоды с барьером Шоттки и с МДП-структурой.

Фоторезисторы изготовляют в основном из поликристаллических полупроводниковых пленок на основе соединения (кадмия с серой и селеном). Максимальная спектральная чувствительность фоторезисторов 0,5 – 0,7 мкм. Фоторезисторы, как правило, применяют при малой освещенности; по чувствительности они сравнимы с фотоэлектронными умножителями – приборами с внешним фотоэффектом, но требуют низковольтного питания. Недостатками фоторезисторов являются низкое быстродействие и высокий уровень шумов.

Наиболее распространенными фотоприемниками с внутренним усилением являются фототранзисторы и фототиристоры. Фототранзисторы чувствительнее фотодиодов, но менее быстродействующие. Для большего повышения чувствительности фотоприемника применяют составной фототранзистор, представляющий сочетание фото- и усилительного транзисторов, однако он обладает невысоким быстродействием.

В оптронах в качестве фотоприемника можно использовать фототиристор (полупроводниковый прибор с тремя p-n -переходами, переключающийся при освещении), который обладает высокими чувствительностью и уровнем выходного сигнала, но недостаточным быстродействием.

Многообразие типов оптронов определяется в основном свойствами и характеристиками фотоприемников. Одно из основных применений оптронов – эффективная гальваническая развязка передатчиков и приемни­ков цифровых и аналоговых сигналов. В этом случае оптрон можно использовать в режиме преобразователя или коммутатора сигналов. Оптрон характеризуется допустимым входным сигналом (током управления), коэффициентом передачи тока, быстродействием (временем переключения) и нагрузочной способностью.

Отношение коэффициента передачи тока к времени переключения называется добротностью оптрона и составляет 10 5 – 10 6 для фотодиодных и фототранзисторных оптронов. Широко используют оптроны на основе фототиристоров. Оптроны на фоторезисторах не получили широкого распространения из-за низкой временной и температурной стабильности. Схемы некоторых оптронов приведены на рис. 130, а – г.

В качестве когерентных источников излучения применяют лазеры, обладающие высокой стабильностью, хорошими энергетическими характеристиками и эффективностью. В оптоэлектронике для конструирования компактных устройств используют полупроводниковые лазеры – лазерные диоды, применяемые, например, в волоконно-оптических линиях связи вместо традиционных линий передачи информации – кабельных и проводных. Они обладают высокой пропускной способностью (полоса пропускания единицы гигагерц), устойчивостью к воздействию электромагнитных помех, малой массой и габаритами, полной электрической изоляцией от входа к выходу, взрыво- и пожаробезопасностью. Особенностью ВОЛС является использование специального волоконно-оптического кабеля, структура которого представлена на рис. 131. Промышленные образцы таких кабелей имеют затухание 1 – 3 дБ/км и ниже. Волоконно-оптические линии связи используют для построения телефонных и вычислительных сетей, систем кабельного телевидения с высоким качеством передаваемого изображения. Эти линии допускают одновременную передачу десятков тысяч телефонных разговоров и нескольких программ телевидения.

В последнее время интенсивно разрабатываются и получают распространение оптические интегральные схемы (ОИС), все элементы которых формируются осаждением на подложку необходимых материалов.

Перспективными в оптоэлектронике являются приборы на основе жидких кристаллов, широко используемые в качестве индикаторов в электронных часах. Жидкие кристаллы представляют собой органическое вещество (жидкость) со свойствами кристалла и находятся в переходном состоянии между кристаллической фазой и жидкостью.

Индикаторы на жидких кристаллах имеют высокую разрешающую способность, сравнительно дешевы, потребляют малую мощность и работают при больших уровнях освещенности.

Жидкие кристаллы со свойствами, схожими с монокристаллами (нематики, наиболее часто используют в световых индикаторах и устройствах оптической памяти. Разработаны и широко применяются жидкие кристаллы, изменяющие цвет при нагревании (холестерики). Другие типы жидких кристаллов (смектики) используют для термооптической записи информации.

Оптоэлектронные приборы, разработанные сравнительно недавно, получили широкое распространение в различных областях науки и техники, благодаря своим уникальным свойствам. Многие из них не имеют аналогов в вакуумной и полупроводниковой технике. Однако существует еще много нерешенных проблем, связанных с разработкой новых материалов, улучшением электрических и эксплуатационных характеристик этих приборов и развитием технологических методов их изготовления.


Раздел 5. Устройства на приборах с зарядовой связью (ПЗС).

Тема 5.1. Принципы построения и действия ПЗС.

Приборы с зарядовой связью (ПЗС),как и транзисторы,обладают свойством универсальности,позволяющим использовать их в самых разнообразных устройствах.Они применяются в цифровых ЗУ большой информационной емкости.В оптоэлектронных приемниках изображений на основе ПЗС создают формирователи видеосигналов.В радиотехнических системах обработки информации ПЗС используют при разработке линий задержки,фильтров различных типов,устройств спектрального анализа и обработки радиолокационных сигналов.

В данной главе рассматривается устройство,принцип действия и параметры элементов ПЗС,а также разновидности их конструкций.

Устройство,принцип действия.

Основными элементами ПЗС являются однотипные МДП – конденсаторы,сформированные на общей монокристаллической полупроводниковой подложке 1 p – типа (рис.1).Расположенные на слое диэлектрика 2 полоски затворов 3 образуют регулярную линейную систему или плоскую матрицу.Для большинства приборов подложку изготавливают из высокоомного кремния,диэлектриком служит диоксид кремния.Затворы с помощью алюминиевых или поликремниевых пленочных проводников присоединяют к управляющим шинам,на которые относительно заземленного электрода подложки подают импульсные управляющие напряжения.В рассматриваемом приборе три управляющих шины Ф1,Ф2,Ф3, поэтому он называется трехтактным.Для приборов с подложкой p -типа управляющие напряжения как правило имеют положительную полярность,а с подложкой n -типа – отрицательную.

При подаче напряжения высокого уровня,например,на шину Ф1 в приповерхностных областях полупроводниковой подложки под затворами,соединенными с этой шиной (первым,четвертым и т.д.),возникают потенциальные ямы для электронов.Электрический сигнал в ПЗС представлен не током или напряжением,как в микросхемах транзисторах на транзисторах,а зарядом – зарядовым пакетом.Принцип действия ПЗС основан на накоплении и хранении зарядовых пакетов в потенциальных ямах под затворами и на зарядовых пакетов в потенциальных ямах под затворами и на перемещении зарядовых пакетовмежду соседними элементами при изменении управляющих напряжений – тактовых импульсов.Взаимодействие соседних элементов осуществляется с помощью переноса зарядовых пакетов в полупроводниковой подложке в направлении,показанном стрелкой на рис.1,а.Это взаимодействие называют зарядовой связью,что отражено в названии прибора. Для того чтобы между соседними элементами обеспечивалась эффективная зарядовая связь,расстояния между затворами должны быть достаточно малыми по сравнению с толщиной обедненных слоев под затворами.Благодаря непосредственной зарядовой связи между соседними элементами в ПЗС не нужны сигнальные проводники,необходимые в интегральных микросхемах содержащих транзисторы.На поверхности большей части кристалла распологаются только управляющие шины,а сигнальнальные проводники используются лишь на входах и выходах ПЗС.

У поверхности подложки сформированы области 4 p+-типа,границы которых на рис.1,а показаны штриховыми линиями.Области p+-типа ограничивают часть подложки,расположенную под затвором,в которой перемещаются зарядовые пакеты.Поэтому ее называют каналом переноса.

Рассмотрим физические процессы в МДП – структуре,подробно описанные в ,применительно к ПЗС,которые в отличие от МДП транзисторов работают только в импульсном режиме.Пусть при t=0 напряжение на затворе изменяется скачком от Uз =0 до Uз >Uпор,где Uпор- пороговое напряжение.В полупроводнике под затвором образуется потенциальная яма для электронов и в течение очень короткого отрезка времени (порядка времени диэлектрической релаксации) формируется слой с высоким удельным сопротивлением, в котором под действием поля удалены основные носители – дырки, а электроны еще не успели накопиться. Глубина потенциальной ямы максимальна на границе полупроводника с диэлектриком, здесь начинает накапливаться зарядовый пакет электронов Qn. Он появляется вследствие контролируемого переноса зарядов из соседней МДП-структуры и неконтролируемых процессов: тепловой генерации электронов в обедненном слое или на поверхности полупроводника,диффузии электронов из подложки.

Распределения поверхностного потенциала в МДП-структуры и неконтролируемых процессов: тепловой генерации электронов в обедненном слое или на поверхности полупроводника, диффузии электронов из подложки.

Распределение поверхностного потенциала в МДП-структуре в направлении, перпендикулярном затвору, для различных моментов времени приведены на рис.2.Координата x отсчитывается от границы полупроводник (П) – диэлектрик (Д). Штриховой линией показана граница диэлектрик – металл (М). По мере накопления зарядового пакета за счет тепловой генерации носителей заряда толщина обедненного слоя Lоб и поверхностный потенциал полупроводника фпов уменьшаются, а разность потенциалов на диэлектрике увеличивается. В установившемся режиме (t) поверхностный потенциал уменьшается до значения фпор=2фтln(Na/ni), где Na – концентрация акцепторов в подложке; ni – концентрация собственных носителей. При этом у поверхности образуется инверсный слой n-типа, максимальный заряд электронов в котором

Qn макс =Cд(Uз-Uпор),

Где Cд=SзE0 E д/d – емкость диэлектрика; Sз – площадь затвора.

Для работы ПЗС существенна зависимость поверхностного потенциала от величины зарядового пакета при заданном напряжении затвора (рис. 3). Эта зависимость приблизительно линейная:

Фпов= - Qn/Cд.

При постоянном значении Qn поверхностный потенциал возрастает при увеличении напряжении затвора также приблизительно по линейному закону.

Приведенные зависимости позволяют наглядно проиллюстрировать работу ПЗС с помощью гидродинамической модели (рис.4, а-в). В этой модели потенциальная яма отождествляется с сосудом, зарядовый пакет Qn- с жидкостью, заполняющей этот сосуд, поверхностный потенциал, т.е. глубина потенциальной ямы,- с расстоянием h от поверхности жидкости, заполняющий этот сосуд, др верхнего края сосуда. В такой модели между объемом жидкости в сосуде и глубиной h (Qn) его незаполненной части существует линейная зависимость вида (11.2), а глубина пустого сосуда h(0) увеличивается пропорционально напряжению затвора (см. рис.11.4). Эта модель используется для пояснения процесса переноса зарядного пакета.

Рассмотрим процесс переноса зарядного процесса в ПЗС с трехактной схемой управления. Временные диаграммы управляющих импульсов для этого случая приведены на рис.5. Пусть в момент времени t1 на затворах, присоединенных к ширине Ф2 , напряжение высокого уровня U’3>Uпор и под вторым и пятым затворами накоплены зарядовые пакеты Qn2 и Qn5 (рис.6), а на затворах, присоединенных к шинам Ф1 и Ф3 – напряжение низкого уровня и под соответствующими затворами нет потенциальных ям и зарядовых пакетов. В момент времени t2 на затворы,соединенные с шиной Ф3 поступает напряжение высокого уровня и под ними практически мгновенно формируются пустые потенциальные ямы. На затворах шины Ф1 сохраняется напряжение низкого уровня.

Для нормальной работы ПЗС расстояние между соседними затворами должно быть достаточно малым, чтобы потенциальные ямы соседних элементов, на затворы которых подано напряжение U’3, сливались в единую потенциальную яму без барьера посередине, как показано на рис.11.6. для момента времени t3 >t >t2.

Перенос зарядочных пакетов становится возможным благодаря краевому эффекту. Он состоит в том, что размеры потенциальной ямы в плоскости пластины (в направлении переноса зарядных пакетов) превышают размеры затвора, т.е. потенциальная яма образуется не только под затвором, но и некотором расстоянии от его краев. Размеры областей за границами затвора, в которых формируется потенциальная яма, увеличиваются с ростом напряжения на затворе. Только при достаточно больших напряжениях на соседних затворах и малых расстояниях между ними потенциальные ямы под соседними затворами перекрываются, образуя единую потенциальную яму.

Поскольку при t = t2 (см. рис.6) в третьем элементе электронов нет, а во втором накоплен зарядовый пакет Qn2, то согласно зависимостям, показанным на рис.3., при одинаковых напряжениях на затворах U32 =U 33 =U’3 поверхностный потенциал под затвором 3 будет значительно выше, чем под затвором 2. В результате влияния зарядового пакета Qn2 при одинаковых напряжениях на затворах 2 и 3 в общей потенциальной яме возникает продольное электрическое поле, ускоряющее электроны в сторону третьего элемента.

В гидродинамической модели ПЗС процессу переноса зарядового пакета соответствует перетекание жидкости в пределах общего сосуда. После повышения напряжения в затворе 3 формируется общий сосуд, расположенный под двумя затворами и в промежутке между ними. Жидкость в этом сосуде при t > t2 распределена неравномерно и начинает перетекать под затвор 3. По мере выравнивания уровней жидкости под затворами 2 и 3 скорость его течения уменьшается. Чтобы ускорить перекачку жидкости, напряжение на затворе 2 при t > t3 постепенно понижают до значения U3 мин. Дно сосуда под этим затвором поднимается, и жидкость перемещается в сосуд, расположенный под затвором 3.

При t = t4 перенос зарядового пакета из второго элемента в третий заканчивается, при этом зарядовый пакет Qn2. В тот же период времени осуществляется аналогичный перенос зарядового пакета из пятого элемента в шестой. Направленность переноса зарядового пакетов Qn2 и Q n5 обеспечивается тем, что во время переноса на затворах 1 и 4 (шина Ф1) поддерживается низкое напряжение и под ними потенциальная яма не формируется. Для направленного переноса в рассмотренном случае используют трехтактные управляющие напряжения (см. рис. 5). Для хранения и переноса одного зарядного пакета необходимо три элемента.

В момент времени t = t5 на шину Ф1 подается напряжение высокого уровня (см. рис.5) и начинается перенос зарядовых пакетов Qn3 и Qn6 в следующие элементы. Таким образом интервал времени tпер = t 4-t2 соответствуют времени, отводимому для переноса зарядовых пакетов, а интервал t xp= t 5– t 4 – времени хранения.

Устройства ввода и вывода зарядовых пакетов являются обязательными структурными элементами ПЗС. Они позволяют преобразовать выходные сигналы (уровни напряжения) в сигнальные зарядовые пакеты, а на выходе осуществлять обратное преобразование.

Рассмотрим устройство ввода электрического сигнала (рис.7,а). Оно состоит из области 1 n+ - типа, которая образует с подложкой n+-p переход (входной диод), входного омического контакта 2 к области 1 и входного затвора Ф вх. При простом способе ввода на вход подается сигнал отрицательной полярности, смещающий входной диод в прямом направлении, а к Ф вх прикладывается управляющее положительное направление. Наибольшее прямое смещение инжектирующего n+-p перехода обеспечивается в приповерхностной области, оно увеличивается с ростом разности напряжений на входе и на входном затворе. Зарядовый пакет инжектируется вначале из под n+- области под входной затвор (рис.7, б), а затем переносится под первый затвор Ф1. Величина инжектируемого зарядового пакета увеличивается с ростом амплитуды входного сигнала по линейному (приблизительно экспоненциальному) закону. Кроме того, она зависит от времени инжекции, т.е. от тактовой частоты управляющих импульсов (см. рис.5). Достоинство данного способа ввода электрического сигнала – высокое быстродействие (время инжекции составляет несколько наносекунд).

В ряде случаев требуется обеспечить близкую к линейной зависимость величины инжектируемого зарядового пакета от входного напряжения. Она может быть получена в том же устройстве ввода (см. рис.7, а), если использовать иной режим его работы, называемый режимом инжекции – экстракции (рис.7, в).

Информационный сигнал положительной полярности подают на Ф вх, а входной диод вначале смещают в прямом направлении. На этапе I обеспечивается максимальное заполнение электронами потенциальных ям под входным затвором и первым затвором Ф1, подают напряжение U’3 > U пор. На этапе II входной диод смещают в обратном направлении и экстрагируют электроны из-под затворов Ф вх и Ф1 в n+- область. При этом из-под входного затвора заряд экстрагируется полностью, а из-под первого он экстрагируется до уровня, соответствующего поверхностному потенциалу под входным затвором. Поскольку потенциальная яма входного затвора оказывается пустой, то поверхностный потенциал под этим затвором, как отмечалось выше, пропорционален напряжению на этом затворе, т.е. напряжению входного сигнала. Следовательно, величина зарядового пакета под первым затвором Ф1, пропорциональная поверхностному потенциалу под входным затвором, будет изменяться приблизительно линейно при изменении амплитуды входного сигнала.

Для вывода зарядового пакета на выходе используют устройство (рис.

8, а), содержащее область 1 n+ - типа проводимости, омический контакт 2 к этой области и выходной затвор Фвых. Область 1 образует с подложкой выходной диод, который смещают в обратном направлении. Для этого на выходной контакт через резистор подают постоянное положительное напряжение, превышающее максимальное напряжение на Фвых. В некоторый момент времени на выходной затвор подают импульс положительной полярности, разрешающий вывод зарядового пакета. Если в последнем элементе Ф3 к этому моменту времени был накоплен зарядовый пакет, то он переместиться в потенциальную яму, расположенную под выходным затвором (рис.8,б) , а затем в более глубокую потенциальную яму области n+- типа и, наконец, в выходную цепь - резистор, присоединенный к n+ - области. К выходному выводу подключают чувствительный усилитель на МДП - транзисторах, которые создаются на этой же подложке.

В ряде случаев необходимо осуществлять неразрушение считывание зарядового пакета. Для этого в качестве датчика поверхностного потенциала и связанной с ним величины зарядового пакета используют МПД - транзистор.

Тема 5.2 ПЗС в устройствах обработки сигналов памяти и приемниках изображения.

К числу основных параметров элементов ПЗС относятся: рабочая амплитуда управляющих напряжений, максимальная величина зарядового пакета, предельные (минимальная и максимальная) тактовая частоты, эффективность переноса зарядового пакета, рассеиваемая мощность.

Рабочая амплитуда управляющих напряжений на затворах определяется двумя основными условиями. Она должна быть достаточно большой для обеспечения требуемой величины зарядового пакета и полного смыкания обеденных слоев соседних элементов, чтобы под их затворами образовывалась общая потенциальная яма переносе зарядового пакета (см. рис. 6). Чем меньше расстояние между амплитуда управляющих напряжений, типичные значения которой 10…20 В.

Максимальная величина зарядового пакета Qn макс является важным пакетом, характеризующим управляющую способность ПЗС. Она пропорциональна амплитуде управляющего напряжения и площади затвора. В элементе с размерами затвора 10*20 мкм и d = 0,1 мкм при /\ ф пов = 5 В Qn макс = 0,35 пКл. На практике выбирают вдвое меньшую величину для предотвращения потерь зарядового пакета, вызванных выходом части электронов из потенциальной ямы в подложку (имеются в виду электроны, энергия которых достаточна для преодоления потенциального барьера).

Минимальная тактовая частота f т.мин обратно пропорциональна максимально допустимому времени хранения зарядового пакета в одном элементу. Это время ограничено, так как постепенно величина зарядового пакета изменяется вследствие неконтролируемого накопления электронов в потенциальных ямах под затвором. Эти электроны появляются в результате тепловой генерации носителей заряда в обедненном слое и на границе полупроводника с диэлектриком, а также за счет диффузии из подложки.

Qп / Q n макс = jт N / f т Сд.уд /\ ф пов макс < a , где Сд.уд – удельная емкость диэлектрика;

/\ ф пов макс- максимальное изменение поверхностного потенциала при наличии под затвором заряда Q n макс. При N = 10 , d = 0,1 мкм, jт = 10 / cм, ф пов макс = 5 В и получаем f т > 60 кГц.

Для увеличения допустимого времени хранения зарядового пакета и уменьшения

f т.мин снижают концентрацию объемных центров рекомбинации, плотность поверхностных состояний и рабочую температуру.Типичные значения f т.мин = 30…300Гц.

Максимальная тактовая частота f т.макс обратно пропорциональна минимально допустимому времени переноса. При работе с максимальной тактовой частотой перенос зарядного пакета в следующий элемент начинается непосредственно после окончания его переноса в данный элемент. Минимально допустимое время переноса зарядового пакета связано с эффективностью его переноса.

Эффективность переноса определяется соотношением n = Qn(i+1) / Qni, где Qni,

Qn(i+1) – зарядовые пакеты в i- м элементе после переноса n < 1.Допустимое уменьшение зарядового пакете при многократных переносах зависит от типа устройства. При заданном допустимом уменьшении зарядового пакета эффективность переноса определяет максимальное число элементов, через которые может быть передан зарядовый пакет. При анализе переноса часто используют величину n = 1 – n ,называемую коэффициентом потерь. Для сложных устройств на ПЗС с большим числом переносов требуемые значения n = 0, 999…0,99999 и соответственно n = 10 …10 .

На рис.9 показаны типичные зависимости коэффициента потерь от тактовой частоты дл рассмотрения выше элементов ПЗС с поверхностным переносом для рассмотренных выше элементов ПЗС с поверхностным переносом зарядовых пакетов 1 и с объемным переносом 2 (см.3) Потери зарядового пакета при переносе на высоких тактовых частотах в основном вызваны тем, что малое время, отводимое на пернос, часть электронов не успевает переместиться в соседний элемент и остается в предыдущем. Эти потери резко увеличиваются с ростом тактовой частоты, т.е. при уменьшении интервала времени, отводимого на перенос.

Минимально допустимое время на переноса зависит от требуемой эффективности переноса, длины затвора L3 и подвижности электронов. В конце переноса (см. рис11.6) напряженность поля под вторым (или пятым) затвором уменьшается. В это время заряд, оставшийся под затвором, очень мал и не влияет на распределение потенциала, поэтому потенциал под ним практически постоянный. Оставшаяся под затвором малая часть зарядового пакета /\ Q2 (или /\Qт5) перемещается под соседний затвор в основном за счет диффузии, причем она убывает приблизительно по экспоненциальному закону вида /\Qn (t) –exp (- t / т диф), где т диф- постоянная времени, характеризующая диффузию электронов,

т диф – постоянная времени, характеризующая диффузию электронов, т диф = L / 2Dn. В соответствии с соотношением Эйнштейна коэффициент диффузии электронов Dn = ф т м n.

Чем больше требуемая эффективность переноса, тем большее время необходимо отвести на перенос зарядового пакета и тем ниже максимальная тактовая частота управляющих импульсов (см. рис.9). На более низких тактовых частотах (f т<< fт. макс) эффективность переноса достигает максимального значения, которое практически не зависит от тактовой частоты. На этих частотах зарядового пакета обусловлены захватом части электронов поверхностными ловушками. За время переноса ловушки не успевают отдать все захваченные ими электроны. Потери такого типа увеличиваются, если данный зарядовый пакет переносится через элементы, не содержащие перед этим другим зарядовых пакетов, так как в них поверхностные ловушки оказываются незаполненными

Для уменьшения потерь, связанных с поверхностными ловушками, используют фоновый заряд, вводимый во все элементы. При этом управляющее напряжение тактовых импульсов (см. рис.5) понижают не до нуля, а до некоторого положительного значения U3 мин, равного, например, 2В. При этом в соответствующих элементах, где формируются неглубокие потенциальные ямы, сохраняется фоновый заряд заполняющий поверхностные ловушки. Тем самым уменьшаются потери зарядового пакета при переносе. Однако потери, связанные с захватом электронов поверхностными ловушками, не снижаются до нуля из=за краевого эффекта: фонового заряд занимает под затвором меньшую площадь, чем информационный зарядовый пакет, т.е. заполняет не все поверхностные ловушки, расположенные вблизи краев затвора. Кроме того, часть электронов захватывается ловушками, расположенными между затворами. Используя фоновый заряд, коэффициент потерь на частотах f т<< fт. макс можно снизить до 10 … 10 .

Рассеиваемая мощность элементов ПЗС очень мала. В стадии хранения она практически не рассеивается, так как текут очень малые токи термогенерации. Мощность рассеивается в элементах ПЗС только в режиме переноса зарядного пакета. Она увеличивается пропорционально тактовой частоте, амплитуде управляющего напряжения и менее 1 мкВт. Столь малая рассеиваемая мощность - одно из их главных достоинств.

Приборы с асимметричными элементами (см.10 и 11) могут работать и при использовании одной шины управляющих импульсов. При этом на вторую шину подается постоянное напряжение, уровень которого находится посередине между высоким и низким уровнями напряжения. Схемы управления такими приборами намного проще, однако амплитуда управляющих импульсов должна быть приблизительно вдвое больше, чем в двухтактных ПЗС.

Одной из важнейших конструктивных разновидностей являются ПЗС с объемным каналом. В рассмотренных выше ПЗС использовался перенос зарядов в очень тонком слое полупроводника, расположенном вблизи его поверхности. Для них поверхностные состояния и низкая подвижность электронов у поверхности ограничивают эффективность переноса и максимальную тактовую частоту. Улучшить эти параметры прибора можно в том случае, если хранить и передавать зарядовые пакеты на достаточном удалении от поверхности полупроводника. Это условие реализуется в ПЗС с объемным каналом переноса. Структура такого прибора показана на рис.12,а. Для его создания в высокоомной положке р-типа (концентрация акцепторов около 10 см) диффузией или ионным легированием формируют тонкий (толщина около 4 мкм) n-слой с концентрацией доноров около 2*10 см. На краях n-слоя размещаются входная и выходная области n+- типа, к которым создают омические контакты.

Прибор с объемным каналом переноса работает следующим образом. Предположим, что подложка и все затворы 1 заземлены, входная цепь разомкнута, а к выходному выводу через резистор подключен источник постоянного положительного напряжения (30 В), смещающий р-n переход между т- областью и подложкой в обратном направлении. При этих условиях в рассматриваемой структуре образуются не только приповерхностные обедненные области под затворами, но и обедненная область р-n перехода. Если положительное напряжение на n- слое достаточно велико, то приповерхностные подзатворные обедненные области смыкаются (в вертикальном направлении) с обедненной областью р-n перехода. Под каждым затвором образуется единая обедненная область, энергия электронов в который меньше, чем в подложке и вблизи поверхности полупроводника.

Распределение потенциала в вертикальном направлении по сечению А-А структуры показано на рис.12, б (кривая 1). Координата х отсчитывается от поверхности полупроводника. Распределение потенциала имеет максимум на глубине х = 3 мкм, т.е. внутри n- cлоя. Он соответствует минимуму потенциальной энергии электронов. Электроны, введенные в такую структуру, будут смещаться электрическим полем к области с минимальной потенциальной энергией. Следовательно, аналогично структуре с поверхностным каналом переноса эта структура способна накапливать и хранить зарядовые пакеты в потенциальных ямах под затворами. В отличие от ПЗС с поверхностным каналом переноса здесь в потенциальных ямах, расположенных в n-слое, накапливаются основные носители – электроны.

Как и в приборах с поверхностным каналом переноса, глубину потенциальной ямы в рассматриваемой структуре можно регулировать, изменяя напряжение на соответствующем затворе. Кривая 2 на рис. 12, б показывает, как влияет повышение напряжения на затворе до 10 В на распределение потенциала (при пустой потенциальной яме). Заряды можно перемещать из данного элемента в соседний, изменяя напряжения на затворах точно так же, как в трехактных ПЗС с поверхностным каналом переноса (см. 5). Поскольку минимум потенциальной энергии (т.е. область накопления зарядовых пакетов) располагается на значительном расстоянии от границы полупроводник – диэлектрик, влияние поверхностных состояний резко ослабляется и увеличивается подвижностью электронов. Эти факторы приводят к увеличению подвижности электронов. Эти факторы приводят к увеличению максимальной тактовой частоты и снижению коэффициента потерь (см. кривую 2 на рис. 9). Эффективность переноса ПЗС с объемным каналом на средних частотах определяется взаимодействием зарядовых пакетов с объемными ловушками. Концентрация объемных ловушек значительно ниже, чем поверхностных.

Важное достоинство ПЗС с объемным каналом – низкий уровень шумов, обеспечиваемый устранением взаимодействия зарядовых пакетов с поверхностными состояниями. Их недостатком является значительно меньшая величина максимального зарядового пакета, что обусловлено большим расстояние между затвором и областью накопления зарядов.

Тема 5.3. ПРИБОРЫ НА ЭФФЕКТЕ ГАННА

В 1963 г. американским физиком Ганном в полупроводниках -арсениде галлия GaAs и фосфиде индия InР с электронной электропроводностью было обнаружено явление генерации высокочастотных колебаний электрического тока в случае приложения к образцу постоянного напряжения, превышающего некоторое критическое значение. Оказалось, что частота колебаний зависит от длины образца и лежит в диапазоне нескольких гигагерц. Поскольку генерация высокочастотных колебаний в объеме не связана с наличием тонких и маломощных p-n-переходов, на приборах Ганна удалось построить СВЧ - генераторы значительно большей мощности, чем на других полупроводниковых приборах.

Генераторы Ганна, выполненные в форме квадратов со стороной 100-150 мкм, дают мощность в непрерывном режиме порядка нескольких милливатт на частотах 1-25 ГГц. Эти генераторы могут работать и в импульсном режиме, обеспечивая импульсную мощность порядка нескольких сотен ватт при к.п.д. 5-25%. Модификацией генератора Ганна является генератор с ограниче­нием накопления объемного заряда (ОНОЗ). В режиме ОНОЗ кристалл арсенида галлии включается последовательно с колеба­тельным контуром и нагрузочным резистором, Наличие контура обеспечивает легкость перестройки частоты. Переменное напря­жение на контуре достаточно велико для того, чтобы во время отрицательной полуволны напряжение на образце падало ниже критического значения. При этом домен успевает разрушиться, так как время диэлектрической релаксации в слабом поле мало (порядка с) по сравнению с периодом колебаний. В режиме ОНОЗ удается достигнуть большей мощности и на более высоких частотах (до сотен гигагерц) благодаря тому, что во время поло­жительной полуволны домен не успевает сформироваться и в большей части образца дифференциальная проводимость оста­ется отрицательной.

На эффекте Ганна, используется падающий участок вольтамперной характеристики, можно построить также СВЧ - усилитель. Например, усилитель на частоте 23-31 ГГц дает усиление по мощности 20 дБ.

Прибор па эффекте Ганна может быть использован как эле­мент логических схем. Быстродействие таких схем весьма высо­кое - несколько десятков пикосекунд на каскад. На рис. 9.23 показана простейшая схема импульсного усилителя на эффекте Ганна в триггерном режиме. В этой схеме напряжение батареи выбрано так, что искажение на приборе Ганна меньше Ut, не больше (U t и - пороговые напряжения возникновения и исчезновения доменов). При подаче на вход усилителя короткого импульса с длительностью меньше пролетно­го времени с амплитудой U n >Ut -Uo прибор Ганна на время, равное пролетному времени То , переключается в состояние со сформированными доменами. Ток через прибор Ганна и сопро­тивление включенного последовательно с ним резистора нагрузки падают, благодаря чему образуется выходной импульс с поляр­ностью,

противоположной входному импульсу, и длительностью, равной пролетному времени То . Такой усилитель может выпол­нять логическую операцию сравнения амплитуды импульса U H с заданной величиной -. Кроме того, он может быть использован как дискриминатор выходных импульсов по их ширине и амплитуде. При наличии дополнительного входа, показанного на рис. 9.23 пунктиром, схему усилителя можно использовать в ка­честве элемента ИЛИ, если прибор Ганна переключается одним импульсом, поданным на любой

из входов.

На эффекте Ганна могут быть созданы схемы, которые перево­дятся в режим самоподдерживаю­щейся генерации одиночным вклю­чающим импульсом. Эта генера­ция может быть прекращена пода­чей импульса противоположной полярности. Такие схемы могут осуществлять функции элемента памяти.

Функциональные приборы, построенные на эффекте Ганна, не имеют p-n-переходов и отдельных элементов.

Они выполняют свою функцию только благодаря свойствам материала и форме образца. Так, если изготовить кристалл арсенида галлия специальной формы то движущиеся домены можно использовать для ге­нерации импульсов практически лю­бой формы. Рассмотрим примеры.

В образце пирамидальной формы (рис. 9.24, а) электрическое поле уменьшается от катода к аноду. Поэтому при сравнительно малых напряжениях смещения домен распространяется только в ту часть прибора вблизи катода, в к второй. С повышением напряжения смеще­ния дрейфовый путь домена увели­чивается, а частота колебаний соот­ветственно уменьшается. При даль­нейшем повышении напряжения до­мен достигает анодa, после чего частота колебаний практически пере­стает зависеть от напряжения сме­щения. Осциллограмма тока, генери­руемого прибором Ганна при различных напряжениях смещения, показана на рис. 9.24,6.

На рис. 9.25 приведены функциональные генераторы Ганна с заданной формой колебаний. В верхней части рисунка показана форма образцов, в нижней - зависимости тока от времени. В соответствии с отмеченным свойством приборов Ганна форма колебаний тока в течение пролетного времени воспроизводит про­филь поперечного сечения образца (выступ на pис. 9.25, а и впа­дина на рис. 9.25, б). Следует отметить, что при малых напряжениях смещения частота колебаний, генерируемых прибором, падает с ростом напряжения. Когда напряжение будет достаточ­но велико для того, чтобы домен распространился до средней части образца с наибольшей площадью поперечного сечения, частота колебаний скачком уменьшится примерно в два раза, поскольку, миновав среднее сечение, домен достигнет анода. Следовательно, такой образец может быть использован в качест­ве переключателя частоты.

Одним из важных функциональных приборов на эффекте Ганна является аналого-цифровой преобразователь (рис. 9.26). Прибор имеет планарную конструкцию. Активный слой, имеющий форму «клина» с кодирующими прорезями, выращивают методом эпитаксии на полу изолирующей подложке.

Как и в приборах пирамидальной формы (см. рис. 9.24, а), путь, проходимый доменом, увеличивается с повышением напряжения смещения. При прохождении доменом кодирующей прорези ток уменьшается, а число всплесков, отнесенное к анодному пробегу домена, соот­ветственно возрастает с повышением напряжения смещения. Приборы на эффекте Ганна могут быть использованы также в качестве основных элементов оптоэлектронных устройств: прием­ников, модуляторов, источников света и т. д.


Тема 5.4. ДИЭЛЕКТРИЧЕСКАЯ ЭЛЕКТРОНИКА:

В микроэлектронике широко применяются тонкие пленки металлов и диэлектриков. При переходе к тонким пленкам возникают новые явления и закономерности, не проявляющиеся в
массивных образцах и структурах. Для пленок типична возможность создавать управляемые эмиссионные токи, аналогичные то­кам в вакууме. При контакте неметаллического твердого тела с металлом, oобладающим меньшей работой выхода, приконтактная область oобогащается свободными носителями заряда, эмиттированными из металла. В массивных образцах эти узкие приконтактные области повышенной электропроводимости не влияют на токовый режим, определяемый концентрацией свобод­ных носителей заряда в объеме тела. В тонких же пленках эмитированные носители заряда могут доминировать во всем объеме, определяя закономерности токовых явлений. С точки зре­ния теории рассеяния носителей заряда любое неметаллическое твердое тело в толстом слое - полупроводник, а в тонком слое - диэлектрик.

Эффекты, связанные с протеканием эмиссионных токов в не­металлических твердых телах, не охватываются ни физикой полу­проводников, ни физикой диэлектриков. Закономерности этих явлении, а также приборные и схемные разработки на их основесоставляют содержание нового раздела физики твердого тела и

электроники - диэлектрической электроники.

Если между двумя металлическими электродами поместить тонкую (порядка 1-10 мкм) диэлектрическую пленку, то мигрируемые из металла электроны заполнят всю толщину пленки и напряжение, приложенное к такой системе, создаст ток в ди­электрике.

Диэлектрическая электроника изучает протекание токов, ограниченных объемным зарядим в диэлектриках, при термоэлектронной эмиссии из ме­таллов и полупроводников, туннельной эмиссии и т. д.

Простейшими приборами диэлектрической электроники явля­ются диоды и транзисторы, имеющие характеристики, аналогичные характеристикам электровакуумных приборов. Диэлектриче­ский диод представляет собой пленочную структуру металл - диэлектрик - металл (рис. 9.27). Принцип действия диэлектри­ческого диода отличен от принципа действия электровакуумного и полупроводникового диодов. Выпрямляющий эффект в диэлектрическом диоде определяется различием работ и выхода из истока и стока и может оказаться значительным за счет нанесения на диэлектрик контакта из материала с очень малой работой выхода. Поэтому в одном направлении возникают большие токи, а в

обратном направлении - исчезающие малые токи. Коэффициент

выпрямления диэлектрического диода достигает О 4 и выше.

В диэлектрическом транзисторе управляющий электрод (затвор) размещен в тонком слое диэлектрика между истоком

Подаваемое на эти области внешнее напряжение управляет значе­нием тока, протекающего между истоком и стоком.

В другом типе диэлектрического транзистора (рис. 9.29) за­твор находится вне диэлектрика CdS; его роль сводится к изме­нению распределения потенциала в диэлектрике, что существенно влияет на значение тока. Распространение получили транзисторы с изолированным затвором структуры МОП (металл-окисел - полупроводник) или МДП (металл - диэлектрик - полупровод­ник).

Приборы диэлектрической электроники удачно сочетают ряд достоинств полупроводниковых и электровакуумных приборов и лишены многих недостатков. Эти приборы микроминиатюрные, малоинерционные, обладают хорошими частотными характеристи­ками, низким уровнем шумов, мало чувствительны к изменениям температуры и радиации. Создание эмиссионных токов в диэлек­триках не требует затрат энергии на нагрев эмитирующего электрода и решения проблемы теплоотвода.

Источники оптического излучения, используемые в оптоэлектронике, вообще говоря, весьма разнообразны. Однако большинство из них (сверхминиатюрные накальные и газоразрядные лампочки, порошковые и пленоч­ные электролюминесцентные излучатели, вакуумные катодолюминофорные и многие другие виды) не удовле­творяют всей совокупности современных требований и находят применение лишь в отдельных устройствах, главным образом в индикаторных приборах и отчасти в оптронах.

При оценке перспективности того или иного источни­ка определяющую роль играет агрегатное состояние активного светящегося вещества (или вещества, заполняющего рабочий объем). Из всех возможных вариан­тов (вакуум, газ, жидкость, твердое тело) предпочте­ние отдается твердотельному веществу, а «внутри» него – монокристаллическому как обеспечивающему наибольшую долговечность и надежность приборов.

Фундамент оптоэлектроники образуют две группы излучателей:

1) оптические генераторы когерентного излучения (лазеры), среди которых следует выделить полупровод­никовые лазеры;

1) светоизлучающие полупроводниковые диоды, осно­ванные на принципе спонтанной инжекционной электро­люминесценции.

Оптоэлектронный полупроводниковый прибор – это полупроводниковый прибор, излучающий или преобразующий электромагнитное излучение, чувствительный к этому излучению в видимой, инфракрасной и (или) ультрафиолетовой областях спектра или использующий подобное излучение для внутреннего взаимодействия его элементов.

Оптоэлектронные полупроводниковые приборы можно подраз­делить на полупроводниковые излучатели, приемники излучения, оптопары и оптоэлектронные интегральные микросхемы (рис. 2.1).

Полупроводниковый излучатель – это оптоэлектронный полупроводниковый прибор, преобразующий электрическую энергию в энергию электромагнитного излучения в видимой, инфракрасной и ультрафиолетовой областях спектра.

Многие полупроводниковые излучатели могут излучать только некогерентные электромагнитные колебания. К ним относятся полупроводниковые излучатели видимой области спектра – полупроводниковые приборы отображения информации (свето-излучающие диоды, полупроводниковые знаковые индикаторы, шкалы и экраны), а также полупроводниковые излучатели инфракрасной области спектра – инфракрасные излучающие диоды.

Когерентные полупроводниковые излучатели – это полупро­водниковые лазеры с различными видами возбуждения. Они могут излучать электромагнитные волны с определенной ампли­тудой, частотой, фазой, направлением распространения и поля­ризацией, что и соответствует понятию когерентности.

Введение Оптоэлектронные приборы – это устройства, чувствительные к электромагнитному излучению в видимой инфракрасной и ультрафиолетовой области, преобразующие оптическое излучение в электрический сигнал и наоборот, электрический сигнал в оптическое излучение. К первому виду оптоэлектронных приборов относятся фотоприёмники и солнечные батареи, ко второму виду светодиоды и полупроводниковые лазеры. Для преобразования оптического излучения в электрический сигнал используется межзонное поглощение квантов света в полупроводниках, как наиболее эффективный канал преобразования энергии. При поглощении света генерируется неравновесные – p и n носители. В фотоприемных устройствах как правило используется принцип регистрации не основных носителей заряда. Наиболее распространённые реализуются на основе диодных структур.

Фотоэлементы Фотоэлементами называют фотодиоды, фоторезисторы, фототранзисторы и другие светочувствительные приборы, используемые в электронной автоматике в качестве датчиков устройств, реагирующих, например, на изменение интенсивности освещения.

Другие типы фотодетекторов На барьере Шоттки Для обеспечения эффективного приема оптического излучения используют тонкие слои металла. В области пространственного заряда диода с барьером Шоттки на основе полупроводника nтипа при обратном смещении генерируемые электронно дырочные пары разделяются электрическим полем, и дырки выбрасываются в металлический контакт, а электроны - в базу. Так как ОПЗ имеет малую ширину и примыкает к светоприёмной поверхности, то такие фотодиоды обладают высокой квантовой эффективностью и высоким коэффициентом поглощения в области малых длин волн. Оптическое излучение полностью поглощается в ОПЗ фотодиода. Их можно использовать для детектирования оптического излучения при высоких частотах модуляции.

На гетеропереходах Полупроводник с более широкой запрещенной зоной используется как окно, которое пропускает оптическое излучение с энергией, меньшей чем ширина запрещенной зоны без заметного поглощения. И тогда эффективность фотодиода будет зависеть только от того, на каком расстоянии расположен p n переход от светоприёмной поверхности. Важно использовать гетеропереход с малой величиной обратного темнового тока, которую можно обеспечить, сводя к минимуму плотность граничных состояний, ответственных за появление, например, части тока, обусловленной фотогенерацией электронно дырочных пар в ОПЗ p n перехода. Это обеспечивается за счет согласования постоянных решеток обоих полупроводников.

Фоторезисторы это дискретные светочувствительные резисторы, действие которых основано на изменении проводимости полупроводникового материала под действием светового излучения. Он представляет собой пленку из специального полупроводникового материала (сернистый свинец, селенид кремния, сернистый кадмий), обладающего очень высокой чувствительностью к лучам света, которую наносят на стекло или керамику. Будучи включенным в цепь источника постоянного или переменного напряжения, фоторезистор изменяет свое сопротивление и ток в цепи в зависимости от интенсивности света.

Основные параметры Up - рабочее напряжение - это постоянное напряжение, приложенное к фоторезистору, при котором обеспечены номинальные значения его параметров при длительной работе; Umax - максимально допустимое напряжение - это максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором обеспечена заданная надеж ность при длительной работе; Iсв - световой ток - ток, протекающий через фоторезистор при рабочем напряжении и воздействии потока излуче ния заданной интенсивности и спектрального распределения; Iт-темновой ток-ток, протекающий через фоторезистор при рабочем напряжении в отсутствие потока излучения в диапазоне спектральной чувствительности; Rт - темновое сопротивление - сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности; tсп - постоянная времени по спаду тока - время, в течение которого световой ток уменьшается до значения 37 % от максимума при затемнении фоторезистора; tн - постоянная времени по нарастанию тока - время, течение которого световой ток увеличивается до значения 63% от максимума при прямоугольной форме единичного импульса света; Основные характеристики фоторезисторов - спектральная, люкс амперная, вольтамперная.

Спектральная характеристика отображает чувствительность фоторезистора при действии на него излучения определенной длины волны. Чувствительность зависит от самой области спектра материала светочувствительного элемента. Сернисто кадмиевые фоторезисторы имеют высокую чувствительность в видимой области спектра, селенисто кадмиевые - в красной и ближней инфракрасной областях, сернисто свинцовые инфракрасной области спектра.

Вольтамперная характеристика Вольтамперная характеристика фоторезисторов показывает зависимость светового тока, протекающего через резистор, от приложенного к нему напряжения. Вольтамперная характеристика фоторезисторов линейна в широком интервале напряжения. Линейность нарушается только при малых значениях напряжения.

Люкс амперная характеристика Люкс-амперная характеристика фоторезисторов показывает зависимость светового тока, протекающего через резистор, от освещенности. Полупроводниковые фоторезисторы имеют обычно нелинейные люкс амперные характеристики

Фототранзисторы действует также как и остальные фотодетекторы, однако транзисторный эффект обеспечивает усиление фототока. По сравнению с фотодиодом фототранзистор более сложен в изготовлении и уступает ему в быстродействии. Фототранзистор особенно эффективен, так как обеспечивает высокий коэффициент преобразования по току(50% и более). В режиме работы с плавающей базой фотоносители дают вклад в ток коллектора в виде фототока. Кроме того, дырки фотогенерируемые в базе, приходящие в базу из коллектора, уменьшают разность потенциалов между собой и эмиттером, что приводит к инжекции электронов через базу в коллектор.

Интегральная реализация Биполярный транзистор может быть интегрально совмещен с другими приборами. Например, используя дополнительный транзистор, можно сформировать составной фототранзистор с существенно большим коэффициентом усиления. Быстродействие рассмотренных структур ограничивается большой емкостью перехода база коллектор и уменьшается при увеличении усиления за счет эффекта обратной связи.

Фотодиоды Это полупроводниковые диоды, используемые для регистрации оптических сигналов В фотодиодах на основе p-n – переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей.

Физические основы работы фотодиода При контакте двух полупроводников с разными типами проводимости вследствие разности термодинамических работ выхода Фn тип

Фотодиод при освещении При попадании кванта света, с энергией hn в полосе собственного поглощения в полупроводнике возникает пара неравновесных носителей – электрон и дырка. При этом регистрируется изменение концентрацией носителей. Изменение концентрации неосновных носителей дает изменение фототока, не зависящего от полярности и величины приложенного напряжения, направлен от n – к p – области полупроводника.

Ограничение по применению Две характеристики p n фотодиодов ограничивают их применение в большинстве волоконно оптических приложений. Во первых, обедненная зона составляет достаточно малую часть всего объема диода, и большая часть поглощенных фотонов не приводит к генерации тока во внешнем контуре. Возникающие при этом электроны и дырки рекомбинируют на пути к области сильного поля. Для генерации тока достаточной силы требуется мощный световой источник. Во вторых, наличие медленного отклика, обусловленного медленной диффузией, замедляет работу диода, делая его непригодным для средне и высокоскоростных применений. Это позволяет использовать фотодиод на основе p n – перехода только в килогерцовом диапазоне.

Введение Альтернативные и возобновляемые источники энергии, такие как энергия ветра и солнечного света, гидро- и геотермальная энергия, во всем мире привлекают все больше внимания. Растущий интерес к ним вызван экологическими соображениями, и ограниченностью традиционных земных ресурсов. Особое место среди альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии. 1954 г – Чапен, Фуллер и Пирсон – создают первый солнечный элемент на основе диффузионного кремниевого р-п - перехода. Впоследствии Рейнольдс и др. разработали солнечный элемент на сульфиде кадмия. Затем солнечные элементы были созданы на многих других полупроводниках с использованием различных конструкций прибора и применением монокристаллических и поликристаллических материалов и аморфных тонкопленочных структур.

Солнечная батарея полупроводниковый фотоэлектрический генератор, непосредственно преобразующий энергию солнечной радиации в электрическую. Солнечная батарея представляет собой плоскую панель, состоящую из размещенных вплотную фотоэлементов и электрических соединений, защищенную с лицевой стороны прозрачным твердым покрытием. Число фотоэлементов в батарее может быть различным, от нескольких десятков до нескольких тысяч.

Электрический ток в солнечной батарее возникает в результате процессов, происходящих в фотоэлементах при попадании на них солнечного излучения. Действие солнечных элементов основано на использовании явления внутреннего фотоэффекта перераспределения электронов по энергетическим состояниям в конденсированной среде, происходящего при поглощении электромагнитного излучения). В солнечных элементах используется вентильный (барьерный) фотоэффект (заключается в возникновении электродвижущей силы в p-n переходе под действием света).

Энергетические характеристики солнечных батарей определяются полупроводниковым материалом, конструктивными особенностями, количеством элементов в батарее. Распространённые материалы: ü Si ü Арсенид галлия – один из наиболее перспективных материалов для создания высокоэффективных солнечных батарей. Это объясняется следующими его особенностями: почти идеальная для однопереходных солнечных элементов ширина запрещенной зоны 1, 43 э. В; высокая радиационная стойкость, что совместно с высокой эффективностью делает этот материал чрезвычайно привлекательным для использования в космических аппаратах; повышенная способность к поглощению солнечного излучения: требуется слой толщиной всего в несколько микрон; относительная нечувствительность к нагреву батарей на основе Ga. As; характеристики сплавов Ga. As с алюминием, мышьяком, фосфором или индием дополняют характеристики Ga. As, что расширяет возможности проектировании солнечных элементов.

ü Поликристаллические тонкие пленки также весьма перспективны для солнечной энергетики. Чрезвычайно высока способность к поглощению солнечного излучения у диселенида меди и индия (Cu. In. Se 2) – 99 % света поглощается в первом микроне этого материала (ширина запрещенной зоны – 1, 0 э. В). ü Теллурид кадмия (Cd. Te) – еще один перспективный материал для фотовольтаики. У него почти идеальная ширина запрещенной зоны (1, 44 э. В) и очень высокая способность к поглощению излучения. Пленки Cd. Te достаточно дешевы в изготовлении. ü Среди солнечных элементов особое место занимают батареи, использующие органические материалы. Коэффициент полезного действия солнечных элементов на основе диоксида титана, покрытого органическим красителем, весьма высок – ~11 %.

Основные принципы работы солнечных батарей Солнечный элемент на p-n структурах. Элемент солнечной батареи представляет собой пластинку кремния n-типа, окруженную слоем кремния р-типа толщиной около одного микрона, с контактами для присоединения к внешней цепи. Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электрон дырочные пары. Электроны, генерируемые в p-слое вблизи pn-перехода, подходят к p-nпереходу и существующим в нем электрическим полем выносятся в n-область.

Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой (рис. а). В результате n -слой приобретает дополнительный отрицательный заряд, а p-слой – положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение (рис. б). Отрицательному полюсу источника тока соответствует n-слой, а pслой – положительному. Зонная модель разомкнутого p-n-перехода: а) - в начальный момент освещения; б) - изменение зонной модели под действием постоянного освещения и возникновение фото. ЭДС

Генерирование электрического тока солнечным элементом а - фотоны А и В образовали электронно-дырочные пары аа" и bb". Электрон c и дырка с", образованные предыдущим фотоном, движутся к контактам солнечного элемента. Электроны d, e, f и g перемещаются по внешней цепи, образуя электрический ток; б - дырка, образованная фотоном А, прошла через переход и направляется к положительному контакту. Электрон, образованный фотоном В, также прошел через переход и движется к отрицательному контакту Электрон с перешел из полупроводника в проводник. Электрон g перешел в полупроводник и рекомбинировал с дыркой с".

Способы повышения эффективности преобразования Для повышения КПД и выходной мощности можно использовать многокаскадные солнечные элементы либо устройства спектрального разложения света. В последнем случае солнечное излучение разлагается на много узких спектральных полос и излучение из каждой полосы преобразуется с помощью элемента, ширина запрещенной зоны которого выбрана наиболее оптимальной по отношению к спектральному составу данной полосы. Дихроичные зеркала разлагают падающий свет, отражая фотоны с высокой энергией в элемент 1 и пропуская фотоны с низкой энергией к элементу 2 и далее к элементу 3. При 1000 -кратном концентрировании солнечного излучения значение к. п. д. при деление света на два спектральных диапазона ~60 %. а при делении на 10 полос он составляет ~85 %.

ВАХ солнечного элемента Величина установившейся фото. ЭДС при освещении перехода излучением постоянной интенсивности описывается уравнени-ем вольт - амперной характеристики (ВАХ): U = (k. T/q)ln((Iф-I)Is/+1) где Is– ток насыщения, а Iф – фототок. Уравнение ВАХ справедливо и при освещении фотоэлемента светом произвольного спектрального состава, изменяется лишь значение фототока Iф. Максимальная мощность отбирается в том случае, когда фотоэлемент находится в режиме, отмеченном точкой а.

Солнечные элементы на барьерах Шоттки Две основные компоненты спектрального отклика (числа коллектируемых электронов, приходящихся на один падающий фотон с данной длиной волны) и фототока связаны с генерацией носителей в обедненном слое и в электронейтральной базовой области. Коллектирование носителей в объединённом слое происходит так же, как и в p-n-переходе.

Сильное поле в обеднённом слое выносит из него генерируемые светом носители еще до того, как они успевают рекомбинировать, вследствие чего фототок оказывается равным (*) где Т(l) - коэффициент пропускания металлом монохроматического света с длиной волны l. Фототок, создаваемый генерацией носителей в базовой области, описывается выражением (**) Полный фототок равен сумме выражений (*) и (**). Видно, что для увеличения фототока следует повышать коэффициент пропускания Т и диффузионную длину Ln.

Оптоэлектроника использует оптические и электронные явления в веществах и их взаимные связи для передачи, обработки и хранения информации. Элементной базой оптоэлектроники являются оптоэлектронные приборы - оптроны.

Оптроном называется устройство, состоящее из связанных между собой оптически (посредством светового луча) светоизлучателя и фотоприемника и служащее для управления и для передачи информации.

Оптрон представляет собой единую конструкцию, состоящую из источника и приемника излучения, связанных между собой оптическим каналом. Структурная схема оптрона приведена на рис. 8.8.

Рис.8.8. Структурная схема оптрона

Входной сигнал, например электрический ток I вх, преобразуется в светоизлучателе СИ в световой поток Ф , энергия которого пропор­циональна входному сигналу. По оптическому каналу ОК световой поток направляется в фотоприемник ФП, где преобразуется в пропорциональное световому потоку значение выходного электрического тока I вых. С помощью устройства управления оптическим каналом УОК можно управлять световым потоком путем изменения физических свойств самого оптического канала.

Таким образом, в оптронах осуществляется двойное преобразование энергии: электрической в световую и световой снова в электрическую. Это придает оптронам ряд совершенно новых свойств и позволяет на их основе создавать электронные устройства с исключительно своеобразными параметрами и характеристиками. Так, применение оптронов позволяет осуществить почти идеальную электрическую развязку между элементами устройства (сопротивление до 10 16 Ом, проходная емкость до 10 -4 пФ). Кроме того, могут быть эффективно использованы такие свойства оптронов, как однонаправленность информации, отсутствие обратной связи с выхода на вход, высокая помехозащищенность, широкая полоса пропускание (от нуля до сотен и даже тысяч мегагерц), совместимость с другими (полупроводниковыми) приборами. Это дает возможность использовать оптроны для модулирования сигналов, измерений в высоковольтных цепях, согласования низкочастотных цепей с высокочастотными и низкоомных с высокоомными.

К недостаткам оптронов следует отнести зависимость их параметров от температуры, низкие КПД и коэффициент передачи.

Рисунок 8.9. Устройство оптрона: 1 - выводы: 2 - фотоприемник: 3 - корпус; 4 - оптическая среда; 5 - светодиод



Устройство оптрона показано на рис.8.9 В качестве излучателей в оптронах используют обычно светодиоды на основе арсенида-фосфида галлия GaAsP или алюминий-арсенида галлия GaAlAs, характеризующиеся большой яркостью, высоким быстродействием и длительным сроком службы. Кроме того, они хорошо согласуются по спектральным характеристикам с фотоприемниками на основе кремния. В качестве фотоприемников могут использоваться фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Фотодиоды и фототранзисторы как приемники излучения получили в оптронах наибольшее распространение, поскольку по своим характе­ристикам и параметрам они могут работать совместно с интегральными микросхемами. Фототиристоры широко применяются в оптронах в качестве ключевых усилителей мощности, управляемых световым излучением. Передача светового излучения в оптронах осуществляется через оптический канал, роль которого могут играть различные среды. Назначение оптического канала - передача максимальной световой энергии от излучателя к приемнику. Передающей средой могут быть воздух, различные иммерсионные среды, а также оптические световоды длиной 1 м и более. Световолоконные оптические линии связи позволяют довести пробивное напряжение изоляции между входом и выходом оптрона до 150 кВ, что дает возможность применять оптроны для измерений в высоковольтных цепях.



Входными параметрами оптронов являются: номинальный вход­ной ток светодиода в прямом направлении I вх.ном и падение напря­жения на нем в прямом направлении U вх при номинальном значении входного тока; входная емкость С вх в заданном режиме; максимально допустимый входной ток I вх.макс; максимально допустимое обратное напряжение на входе U вх.обр.макс.

Выходными параметрами оптронов являются: максимально допус­тимое обратное напряжение U вх.обр.макс, прикладываемое к выходу; максимально допустимый выходной ток I вых.макс; выходная емкость С вых; световое R св и темновое R т выходные сопротивления (для фоторезисторных оптронов).

Из передаточных параметров исходными являются коэффициент передачи тока К I =(I вых / I вх)100, либо дифференциальный коэффици­ент передачи тока К I д = (dI вых / dI вх)100, выраженные в процентах.

Быстродействие оптрона оценивают при подаче на его вход прямоуголь­ного импульса по времени задержки t з д от момента подачи импульса до момента достижения выходным током значения 0,1 I вых.обр.макс, а также по времени нарастания t нар выходного тока от 0,1 до 0,9 его максимального значения. Суммарное время задержки и нарастания называют временем включения t вкл. Быстродействие фотоприемника характеризуется его частотными свойствами, т.е. такой частотой синусоидально модулированно­го светового потока, при которой чувствительность фотоприемника вследствие инерционности уменьшается в раз.

Приведем краткое описание некоторых типов наиболее распространенных промышленных оптронов.

Фотодиодный оптрон. Условное графическое обозначение его приведено на рис. 8.10,а . В качестве излучателя используется светодиод на основе арсенида галлия.

В качестве фотоприемников в диодных оптронах используются кремниевые фотодиоды, которые хорошо согласуются по спектральным характеристикам и быстродействию с арсенид-галлиевыми светодиодами.

Коэффициент передачи тока диодного оптрона мал (K I = 1,0 1,5%), однако диодные оптроны являются самыми быстродействующими.

Как элемент электрической цепи фотоприемник диодного оптрона может работать в двух режимах: фотопреобразователя с внешним источни­ком питания и фотогенератора без внешнего источника питания.

Если учесть зависимость светового потока светодиода оптрона от тока I вх через светодиод, то можно найти зависимость тока I н нагрузочного резистора R н или напряжения U н на нем от входного тока оптрона, т.е. I н = f(I вх ) или U н = φ (I вх ) .

Надо учитывать, что для передачи максимальной энергии требуется согласование нагрузочного резистора с выходным сопротивлением оптрона.

Фототранзисторный оптрон (рис. 8.10, б ).По сравнению с фотодиодным оптроном в качестве фотоприемника в нем используется кремниевый фототранзистор. Являясь усилителем базового тока, фототранзистор имеет существенно более высокую чувствительность, чем фотодиод, поэтому коэффициент передачи тока фототранзисторного оптрона K I = 50 100 %, а оптрона с составным фототранзистором – до 800% и более.

Рисунок 8.10. Условные графические обозначения оптронов: фотодиодного (а), фототранзисторного (б), фоторезисторного (в), фототиристорного (г)

Недостатком фототранзисторов является то, что они по сравнению с фотодиодами гораздо более инерционны и имеют быстродействие 10 -4 – 10 -5 с.

Фоторезисторный оптрон (рис.8.10,в ).В качестве фотоприемника в оптронах иногда используют фоторезисторы на основе селенида или сульфида кадмия (CdSe,CdS), а в качестве излучателя - спектрально согласующиеся с ними светодиоды на основе фосфида или арсенида-фосфида галлия (GaP, GaAsP). Быстродействие фоторезисторных оптронов целиком определяется быстродействием фотоприемника, которое составляет 100-200 мкс.

Фототиристорный оптрон (рис. 8.10,г ) включает в себя фототиристор в качестве фотоприемника. Быстродействие фототиристорного оптрона определяется временем выключения фототиристора, в течение которого прибор переходит из открытого состояния в закрытое, оно составляет десятки микросекунд.

В зависимости от типа фотоприемника оптроны могут применяться в электронных устройствах для переключения, преобразования, согласования, модуляции и т.д. Они могут использоваться также в качестве малогабаритных импульсных трансформаторов, реле для коммутации напряжений и токов, в автогенераторах, цепях обратной связи и т.д.

Оптроны с открытым оптическим каналом служат в качестве раз­личных датчиков (перемещения, «края объекта» и др.). В устройствах передачи информации часто применяют оптоэлектронные интегральные микросхемы, в которых в одном корпусе объединены оптроны и интегральная микросхема. Фотоприемник такой микросхемы может быть изготовлен в том же кристалле кремния, что и транзисторная микросхема, как одно целое.

Оптоэлектронные устройства с управляемым световодом можно использовать в качестве логических ячеек преобразователей частоты, в устройствах переключения индикаторов, индикаторах вида жидкости, устройствах измерения малых перемещений, сенсорных устройствах очувствления роботов и т.д. Эти устройства обладают высоким быстродействием, помехозащищенностью, возможностью применения в агрессивных и взрывоопасных средах.

В последнее время при изготовлении оптоэлектронных устройств источник и приемник излучения оказывается возможным удалять из зоны измерения (от объекта контроля) на десятки метров с помощью элементов волоконной оптики - волоконных световодов (жгутов из нитей стекловолокна).

Оптоэлектронные устройства широко применяют в вычислительной технике, автоматике, контрольно-измерительных устройствах. В дальнейшем применение этих устройств будет расширяться по мере улучшения их характеристик: надежности, долговечности и температурной стабильности.

Оптоэлектроника - это раздел наукн и техники, в ротором изучаются вопросы генерации, обработки, запоминания и хранения информации на основе совместного использования электрических и оптических ивлений. Оптоэлектронные приборы используют при своей работе электромагнитное излучение оптического диапазона.

Современная микроэлектроника не решила проблему всеобщей микроминиатюризации электронной аппаратуры. Такие традиционные элементы, как трансформаторы, разъемные контакты, конденсаторы большой емкости плохо совмещаются с интегральными компонентами из-за больших габаритов. Особые трудности вызывает обеспечение электрической изоляции при связи двух систем: высоковольтной и низковольтной. В частности, такая задача возникает при создании устройств управления высоковольтными установками большой электроэнергии. Здесь на помощь приходит оптоэлектроника. Применение оптического канала связи позволяет обеспечить надежную электрическую изоляцию любых систем, исключить громоздкие реактивные и контактные компоненты, повысить надежность работы оборудования.

Элементная база оптоэлектроники включает в себя:

1) оптоизлучатели - преобразователи электрической энергии в световую;

2) фотоэлектрические приемники излучения (фотоприемники) - преобразователи световой энергии в электрическую;

3) приборы для электрической изоляции при передаче энергии и информации по световому каналу - оптоэлектронные приборы (оптопары);

4) световоды.

Ограничимся рассмотрением наиболее часто применяющихся в промышленной электронике полупроводниковых оптопар, источников или приемников некогерентного излучения.

Полупроводниковым излучателем света является светоизлучающий диод. Известно, что при рекомбинации носителей, т. е. возвращении электрона из зоны проводимости в валентную зону, излучается квант энергии. Наиболее интенсивно рекомбинация происходит вблизи перехода, когда основные носители преодолевают потенциальный барьер и рекомбинируют. Для создания светоизлучающих диодов используют сложные полупроводниковые материалы, у которых квант энергии излучается в оптическом (или инфракрасном) диапазоне, например фосфид галлия, арсенид галлия или карбид кремния. Излучение происходит при пропускании через прибор тока в прямом направлении. Конструкция прибора обеспечивает передачу света от перехода без значительных потерь в толще полупроводника. ВАХ светоизлучающих диодов аналогична характеристикам обычных кремниевых и германиевых диодов.

Светоизлучающие диоды выпускаются в виде отдельных элементов или групп (матриц) для индикации информации в виде букв, цифр и различных символов. Они входят также в состав оптопар. Обозначение светоизлучающего диода на схемах приведено на рис. 1.20, а.

Рис. 1.20. Схемные обозначения светоизлучающего диода (а), фотодиода (б), фототранзистора (в), фототиристора (г) и диодного оптрона (д)

К числу фотоприемников относятся фотодиоды, фототранзисторы, фототиристоры и другие приборы. В § 1.1 было упомянуто явление термогенерации, т. е. перехода электрона из валентной зоны в зону проводимости при нагреве. Аналогичный переход может произойти, если на слой полупроводника воздействовать светом. В результате увеличения числа неосновных носителей увеличивается проводимость вещества (появление фотопроводимости). При облучении светом перехода увеличивается ток неосновных носителей, т. е. увеличивается обратный ток этого перехода: где - световой поток.

На этом основана работа фотодиода, к которому подключается источник обратного напряжения через сопротивление нагрузки . При увеличении Ф увеличивается и растет падение напряжения на нагрузке Обозначение фотодиода на схемах приведено на рис. .

Работа фототранзистора также основана на фотопроводимости. В транзисторе без вывода базы во внешнюю цепь (т е. при ) ток в соответствии с (1.4) определяется

При облучении базы или области коллекторного перехода изменяется ток неосновных носителей пропорционально изменяется . В транзисторе с ОЭ ток усиливается в раз, поэтому мощность сигнала может быть выше, чем в фотодиоде, при том же уровне напряжений источника питания Е. Обозначение фототранзистора приведено на схеме рис. 1.20, в.

Принцип действия фототиристора (схемное обозначение приведено на рис. 1.20,г) на изменении тока воздействии светового облучения. При отсутствии управляющего электрода ток тиристора описывается выражением, получаемым из (1.9):

В фототиристоре . При увеличении светового потока растет и анодный ток . Как показано в § 1.7, при этом увеличиваются коэффициенты , а при достижении тиристор открывается. Таким образом, рост тока при увеличении светового потока стимулирует отпирание тиристора. Ток открытого тиристора может во много раз превышать значение .

Такпм образом, управляемые полупроводниковые приборы (транзистор и тирнстор) в качестве сигнала управления могут использовать товое излучение.

При использовании в качестве фотоприемника фототранзистора может быть получено усиление тока. Общим недостатком оптопар является нелинейность зависимости выходного сигнала от входного, обусловленная нелинейностью характеристик оптопар.

Передача информации от излучателя к фотоприемнику может производиться с помощью световодов: гибких шлангов, состоящих из отражающей оболочки и сердцевины из органического или неорганического стекла. Передача информации по световодам обеспечивает полную защищенность от электромагнитных помех.

Оптоэлектронные приборы находят все более широкое применение в информационной и энергетической электронике, в различных устройствах для передачи и отображения информации.